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Since the mid-1970s, successful Lake Ontario management actions including nutrient load and pollution reduc-
tions, habitat restoration, andfish stocking have improved LakeOntario. However, several newobstacles tomain-
tenance and restoration have emerged. This special issue presents management-relevant research frommultiple
agency surveys in 2011 and 2012 and the 2013 Cooperative Science and Monitoring Initiative (CSMI), that span
diverse lake habitats, species, and trophic levels. This research focused on themes of nutrient loading and fate;
vertical dynamics of primary and secondary production; fish abundance and behavior; and food web structure.
Together these papers identify the status ofmany of the key drivers of the LakeOntario ecosystem and contribute
to addressing lake-scale questions andmanagement information needs in LakeOntario and the otherGreat Lakes
and connecting water bodies.
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Introduction

Lake Ontario receives the water and associated stressors of the other
four Laurentian Great Lakes as well as its own catchment and is consid-
ered the most impacted of these large aquatic ecosystems (Allan et al.,
2013). Since the 1970s, successful management actions including nutri-
ent load and pollution reductions, habitat restoration, and fishery man-
agement substantially improved conditions in Lake Ontario (Mills et al.,
2003). However, several new obstacles to maintenance and restoration
have emerged, including increases inwater clarity (Binding et al., 2007),
establishment and expansion of invasive species, including dreissenid
mussels and Cercopagis (Holeck et al., 2015; Pennuto et al., 2012), ben-
thic invertebrate community change (Barrett et al., 2017; Birkett et al.,
2015) and the struggle for restoration of key native fishes including
lake trout (Salvelinus namaycush), deepwater sculpin (Myoxocephalus
thompsonii) and coregonids (Brenden et al., 2011; Lantry et al., 2007;
Owens et al., 2003). While offshore nutrient concentrations have de-
clined, near-shore habitats continue to be degraded by nutrient and
sediment inputs that can limit their recreational use and influence the
economic development of the region (Makarewicz and Howell, 2012).
Overall, these series of events have led to a Lake Ontario that has an ol-
igotrophic offshore and a nearshore that is challenged by tributary in-
puts, nuisance algae, and invasive species.
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The 2013 Lake Ontario CSMI effort was collaboratively planned to
complement annual surveys and meet management information
needs and science questions. The 2013 CSMI approach was developed
through discussions in 2011 and 2012 among a broad spectrum of bina-
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(Stewart et al., 2016).Wherever possible, 2013 surveys were coordinat-
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contribute to addressing lake-scale questions and management infor-
mation needs in Lake Ontario as well as the other Great Lakes and
connecting water bodies.

Nutrient declines and increased water clarity have changed the ver-
tical distribution of LakeOntario phytoplankton such that a deep chloro-
phyll layer (DCL) is a commonly observed and extensive feature
(Barbiero and Tuchman, 2001; Watkins et al., 2015). Scofield et al. (in
press), showed theDCLwas a persistent feature in 2013, and at times in-
cluded a diatom-rich biomass and productivitymaximum. Although dy-
namic in time and space, the feature was closely aligned with the
thermocline and depth of the photic zone and followed the typical
slope of the thermocline from west to east in the lake. A decrease in
water clarity in mid-August caused by calcite precipitation (whiting)
coincided with the dissipation of this feature. Kelly et al. (2017) used
stoichiometry and fatty acid analyses to assess the potential food quality
of the DCL, finding it similar to the epilimnion. They also explored the
nearshore/offshore gradient and identified a steady seasonal decrease
in quality of pelagic seston from May to September.

Changes in water clarity and phytoplankton depths have also influ-
enced the vertical behavior of Lake Ontario invertebrates. Watkins
et al. (2017 used a variety of sampling techniques to demonstrate zoo-
plankton exhibited classic diel vertical migration (DVM), inhabiting
lake habitats near the thermocline in the day and the epilimnion at
night. This behavior persisted beyond times when a DCL was present,
suggesting that these organismsmay use theDCL as a food source, how-
ever it is likely not the only driver of migration behavior. O'Malley et al.
(2017-this issue) demonstrated that diets of vertically-migratingMysis
diluviana, a critical prey for fish, shifted seasonally from greater propor-
tions of algae in spring to increased zooplanktivory in summer and fall.
In contrast to Mysis diets from 1995, current Lake Ontario mysid diets
include the invasive predatory cladoceran, Cercopagis pengoi (O'Malley
et al., 2017-this issue). Quantifying the behavior and feeding dynamics
of Lake Ontario pelagic invertebrates is critical for developing food
web relationships and effective lake management.

Species invasions and trophic changes have also influenced the Lake
Ontario fish community. Riha et al. (2017) demonstrated Lake Ontario's
dominant forage fish species, alewife, dispersed throughout the epilim-
nion at night in the summer, but formed schools near the thermocline
during the day. As with the zooplankton, this behavior occurred with
and without a DCL present. Cyclopoid copepods and cladocerans were
the primary diet items for this species, although deepwater calanoid
Limnocalanus were also eaten. Happel et al. (2017), used fatty acids to
demonstrate that round goby, an abundant benthic invader, were an
important diet item for brown and lake trout. Although their relative
importance was lower in more pelagic predators such as Chinook and
coho salmon. Similarly, Hoyle et al. (2017-this issue) showed that
round goby were important in immature walleye diets in the Bay of
Quinte; however, mature walleye migrated from Bay of Quinte
spawning grounds to main-lake habitats to consume alewife. Despite
the continued dominance of nonnative prey fish such as alewife and
round goby, Lake Ontario's native deepwater sculpin population have
increased (Weidel et al., 2017-this issue). Historic observations suggest
this species may have been extirpated from Lake Ontario by the mid-
1900s; however since 2008, bottom trawl catches suggest the popula-
tion is increasing rapidly (Weidel et al., 2017-this issue). Genetic analy-
ses compared samples from the rebounding Lake Ontario deepwater
sculpin to historic Lake Ontario deepwater sculpin samples and contem-
porary samples from the upper Great Lakes and found the current pop-
ulation is more similar to the Upper Lakes populations (Welsh et al.,
2017-this issue). The current Lake Ontario population also has reduced
allelic diversity relative to upper Great Lakes populations, indicating a
possible founder effect (Welsh et al., 2017-this issue).

The offshore Lake Ontario benthic invertebrate community
underwent significant change in the 1990s when the native and abun-
dant amphipod Diporeia disappeared as quagga mussels invaded all
Lake Ontario benthic habitats (Birkett et al., 2015). McKenna et al.
(2017) developed a spatially-explicit ecosystem model to simulate
this Lake Ontario benthic invertebrate community change. Model re-
sults suggest the observed declines in Lake Ontario Diporeia are best ex-
plained by a disease-like mortality mechanism rather than a
competition for food mechanism. Model simulations also forecast a
plateauing mussel population and a potential recovery of Diporeia al-
though there are few signs this recovery is occurring.

Lake Ontario's near shore benthic habitat was a research focus be-
cause of previous lake-wide effort (Makarewicz and Howell, 2012),
and efforts to understand this important habitat continued in 2013.
Makarewicz and Lewis (2015) found water quality and biological pa-
rameters identified six distinct regions that characterized Lake Ontario
nearshore habitats. This work identified specific lake regions, stressed
by nutrients, that may be candidates for watershed remediation. Duffy
et al. (2017) assessed the status of the lake bottomwithin the Rochester
Area of Concern (AOC) and found that the sediment toxicity and benthic
invertebrate community within the Rochester AOC were similar to or
better than adjacent embayment and lake habitats. Howell and Dove
(2017), demonstrate that input of nutrients and turbidity from Lake
Erie and surrounding watershed continues to have strong impacts on
western Lake Ontario near shore habitats. Interestingly, the increased
turbidity may have caused beds of Cladophora, a nuisance algae, to
grow in shallowerwater in the St. Catherines area relative to other loca-
tions in Lake Ontario.

Annual and targeted 2013 research efforts in Lake Ontariowould not
be possible without generous and diverse financial support to ourmany
colleagues and collaborators. Major portions of the American monitor-
ing, research funding, and in-kind support were provided by numerous
grants from the Great Lakes Restoration Initiative, Great Lakes Fishery
Commission, United States Geological Survey, United States Environ-
mental Protection Agency, and the New York Department of Environ-
mental Conservation. In Canada, in-kind and direct funding
contributions and grants from several agencies, including the Ontario
Ministry of Natural Resources and Forestry, Ontario Ministry of the En-
vironment and Climate Change, Environment and Climate Change Can-
ada, Fisheries and Oceans Canada, partner Conservation Authorities,
Natural Sciences and Engineering Research Council of Canada, Canada
Research Chairs, and funding support from COA made studies and sup-
port for CSMI on Lake Ontario possible.
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