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Stable isotopes of carbon (δ13C) and nitrogen (δ15N) provide 
powerful chemical tracers to examine diverse questions in 
ecology, including: (i) ecological characteristics of individual 
organisms, including diet and resource use (DeNiro 
and Epstein 1978, 1981; Minagawa and Wada 1984; 
Peterson and Fry 1987); (ii) niche width and niche overlap 
(Heithaus et al. 2013; Kiszka et al. 2015); (iii)  individual 
specialism (Hückstädt et al. 2012; Rosenblatt et al. 2015); 
(iv) movement and migration (Best and Schell 1996; Hobson 
1999; Phillips et al. 2009); and (v) the length and structure 
of, and interactions of organisms within, food webs (Hobson 
and Welch 1992; Hussey et al. 2014), to name but a few. 
These tools are now being applied in the study of all types 
of species from bacteria (Boschker and Middelburg 2002) 
to the largest terrestrial and aquatic predators (Hilderbrand 
et al. 1996; Herman et al. 2005), at individual, community, 
and ecosystem levels, and have particular value for studies 
on species that are obscure (Navarro et al. 2014), of high 
commercial value (Estrada et al. 2005; Johnson and 
Schindler 2009), and/or are critically endangered (Navarro 
et al. 2009; Seminoff et al. 2012). Importantly, through 
exponential growth in the application of stable isotopes over 
recent years and practical and theoretical advancements 
(Gannes et al. 1997; Wolf et al. 2009), there has been 
broad recognition of their relevance for informing manage-
ment (Rubenstein and Hobson 2004; Ramos et al. 2011; 
Hussey et al. 2014).

The acceptance of stable isotopes as a valuable tool 
for use by resource managers is a positive step, but this 
sets a new bar on the quality of data inference and our 
confidence as a community in their interpretation. To 
justify the role of stable isotopes as a tool to inform the 
future management of marine and terrestrial ecosys-
tems, the stable isotope community, as with all disciplines, 
must systematically and objectively review its methods 
and approaches to ensure accurate data interpretation. 
This is particularly pertinent given the number of assump-
tions associated with the use of stable isotopes (for 
example, diet and tissue-specific discrimination factors, 
variable tissue turnover rates, and physiological effects 
that vary among individuals and species) (Gannes et 
al. 1997; Martínez Del Rio et al. 2009; Wolf et al. 2009) 
and the number of quantitative modelling approaches 
used (which are dependent on the requirement to select 
relevant prey items and sources and on knowledge of 
isotopic baselines) (Phillips and Gregg 2003; Moore and 
Semmens 2008; Parnell et al. 2010; Phillips et al. 2014). 
Recently, there has been increased use of stable isotopes 
in conjunction with other established ecological tools, for 
example, compound-specific isotope analysis of amino 
acids (CSIA-AA) (Seminoff et al. 2012; Vander Zanden et 
al. 2013; Hussey et al. 2015a), fatty acids (Kharlamenko et 
al. 2001; Couturier et al. 2013), trace elements (Werry et 
al. 2011; Honda et al. 2012), genetics (Clegg et al. 2003; 
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Valenzuela et al. 2009), telemetry (Cunjak et al. 2005; 
Ceriani et al. 2012; Matich and Heithaus 2013; Carlisle et 
al. 2014), and measures of organism condition (Hobson et 
al. 1993; Gannes et al. 1998), to name but a few. This is 
leading to a multidisciplinary approach that inherently will 
yield more precise conclusions compared to the use of 
stable isotopes as a stand-alone tool. 

Here, we promote the integration of isotopes within a 
multidisciplinary context based on a case study of a large, 
threatened fish, the white shark Carcharodon carcharias. 
We define multidisciplinary as research in which each 
discipline (or subdiscipline) makes an individual contribu-
tion to the overall research findings. Through ontogenetic 
stable isotope profiles derived from the juvenile portion 
of white shark vertebrae, we demonstrate that there are 
several equally viable explanations for the observed 
isotopic trends. Each interpretation, however, would differ-
entially impact the species risk designation and manage-
ment planning actions. The use of techniques from multiple 
subdisciplines within biology (e.g. genetics, telemetry, trace 
elements) coincident with these stable isotope data would 
increase our interpretive ability and hence more effectively 
inform management of this life stage. We recommend, 
where possible, that incorporating stable isotope data into 
a multidisciplinary framework will markedly improve their 
application for conservation and management planning. 

Case study: vertebral stable isotope profiles (δ15N and 
δ13C) of white sharks off southern Africa

Stable isotope profiles (δ15N and δ13C) were derived from 
58 white shark vertebrae sampled from animals inciden-
tally caught in bather protection nets off KwaZulu-Natal, 
on the east coast of South Africa. In brief, dried vertebrae 
were sectioned and sample material was drilled from the 
vertebrae every 1–2 mm along the centre of the corpus 
calcareum. Individual age bands were not analysed and 
data are presented as sequential sampling throughout 
ontogeny. This was based on the assumption that similar-
sized individuals will have similar band thicknesses and 
therefore the integration time per sequential sampling point 
will not differ significantly among individuals. The juvenile 
portion was defined as samples starting after the angle 
change (birth) to approximately 200 cm precaudal length 
(PCL). A linear regression between PCL and vertebral 
radius found that 200 cm PCL corresponded to approxi-
mately 17 mm across the vertebral section from the focus. 
It has been shown that white shark vertebral samples 
do not require decalcification prior to isotope analysis; 
therefore no pretreatment was undertaken (Christiansen et 
al. 2014a). 

The juvenile vertebral isotope profiles (both δ15N and δ13C) 
of these 58 white sharks showed markedly distinct trends 
across time and individuals (Figure 1). Values of δ13C and 
δ15N were highly variable among individuals immediately 
after birth, ranging from −10.9‰ to −16.5‰ and 12.1‰ 
to 17.1‰, respectively (Figure 1b, e). Each individual, 
however, showed consistent isotope values across consecu
tive sampling points until all individual isotope profiles 
converged at ~200 cm PCL (Figure 1). The consistency 
and convergence of δ13C values was more striking than 

that of δ15N. These trends, both inter-individual differences 
in δ13C and δ15N values between juveniles and consist-
ency in isotope values through time for each individual are 
notable and identify divergent life-history strategies during 
these early years. This would indicate these are likely 
management-critical years, as variable life-history strategies 
within the population would require more complex manage-
ment. The convergence point in isotope values at ~200 cm 
PCL would suggest these animals then occur in the same 
food web, based on δ13C, and feed at a similar trophic level, 
based on δ15N. There are several plausible interpretations, 
that may act independently or in combination, to explain the 
observed inter-individual variation.

Viable explanations for observed white shark stable 
isotope profiles

Maternal influence
For most live-bearing organisms, newborn animal tissues 
are formed of their mothers’ provisions during gestation; 
hence their stable isotope values reflect those of their mother 
(i.e. maternal isotopic interference). Knowledge of this 
maternal-newborn isotopic relationship can consequently 
be used to examine retrospectively variation in foraging 
locations among pregnant females. For example, δ13C 
and δ15N values measured in the hair of northern elephant 
seal Mirounga angustirostris pups provided evidence that 
mothers from two breeding colonies have distinct foraging 
habitats (Aurioles et al. 2006). Conversely, this relation-
ship can confound data interpretation of the stable isotope 
values of newborn/juvenile animals depending on the level 
of isotopic discrimination between embryo and mother, 
the rate of elimination of the mother’s isotope value, and 
the incorporation rate of the juvenile’s own diet (Matich et 
al. 2010; Olin et al. 2011). For placental viviparous shark 
species (those connected by umbilical cord to mother 
during in utero development), the stable isotope values 
of near-term and newborn young are typically enriched 
in both 13C and 15N compared to the mother (McMeans et 
al. 2009; Vaudo et al. 2010). Over time, these initial high 
δ13C and δ15N values decline as they equilibrate with those 
of their own diet (Olin et al. 2011), a result of ontogenetic 
shifts in the diet and habitat use of many marine species 
driving mature females to consume a different diet and 
reside in a different habitat to juveniles (Lowe et al. 1996; 
Alonso et al. 2002; Hussey et al. 2011). 

For juvenile white sharks, an aplacental viviparous 
species, both δ13C and δ15N values generally increased 
with time following birth. If, at birth, the initial values of 13C 
and 15N were enriched relative to the mother, it would be 
expected that 13C and 15N would deplete as the isotope 
values became more representative of the individual’s own 
diet/foraging location (Olin et al. 2011; McMeans et al. 
2009; Vaudo et al. 2010). Given that the isotope values of 
large female white sharks are depleted in 13C, likely related 
to offshore foraging during gestation (Carlisle et al. 2012; 
Domeier and Nasby-Lucas 2013; see Figure 1a, sharks 
>315 cm PCL), it is possible that the observed pattern of 
isotopic convergence in these juveniles reflects the loss of 
the maternal isotope value over time. Since vertebrae are 
metabolically stable (Campana et al. 2002), any maternal 
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influence would be due to growth from maternally derived 
nutrients in the whole body of the newborn shark (i.e. 
muscle tissue). Since there are known gradients in δ13C 
values between coastal and pelagic waters (France 1995), 
δ13C values of juveniles would be expected to increase 

as they begin feeding in coastal food webs. The range of 
post-birth δ13C values observed in juvenile white sharks 
may represent differences in maternal habitat (i.e. offshore 
vs inshore feeding during gestation), rather than actual 
habitat differences among juveniles. 
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Figure 1: Stable isotope profiles of 58 white sharks from southern Africa. A single line represents each individual sampled approximately 
every 1–2 mm starting after the angle change (birth); black lines represent males, grey lines represent females. Distance is measured 
from the centre of the vertebrae (focus). (a) Ontogenetic δ13C values for each individual, dotted lines indicate trend changes in isotope 
values at approximately 200 cm precaudal length (PCL) and 315 cm PCL; (b) enlarged shaded area from (a), δ13C values for the juvenile 
portion, less than 17 mm from the focus (~200 cm PCL); (c) δ13C values from six individuals showing consistency in isotope values across 
sequential sampling points until convergence at approximately 17 mm from the focus; (d) ontogenetic δ15N values for each individual, 
dotted lines indicate trend changes in isotope values at approximately 200 cm precaudal length (PCL) and 315 cm PCL; (e) enlarged 
shaded area from (d), δ15N values for the juvenile portion, less than 17 mm from the focus (~200 cm PCL); (f) δ15N values from six 
individuals showing the relative consistency in isotope values across sequential sampling points until convergence at approximately 
17 mm from the focus



Christiansen, Fisk and Hussey192

Individual specialists within a generalist population
It has long been recognised that ecological differences 
in diet and foraging habitat occur among sex and age 
classes of species; however, more recently the focus has 
expanded to include intraspecific niche variation and its 
potential impact on populations (Bolnick et al. 2002, 2003). 
Dietary specialisation occurs when individuals within a 
population use a subset of the total available prey base 
available to that population. Recognition of this behaviour 
has generated new insights into the feeding dynamics and 
interactions across a wide variety of taxonomic groups 
including gastropods, fishes, birds, reptiles, and mammals 
(Bolnick et al. 2003). Novel stable isotope approaches have 
now been developed to quantify inter-individual variation 
in populations that otherwise would be difficult and labour 
intensive to study (Newsome et al. 2009; Vander Zanden 
et al. 2010; Matich et al. 2011). Additionally, analysis of 
incrementally growing structures (e.g. sea otter vibrissae, 
turtle scutes, and shark vertebrae) allows for the study 
of intra-individual changes in isotope values over time 
(e.g. from months to entire lifetime). 

Individual juvenile white sharks showed relatively 
consistent stable isotope profiles prior to convergence, 
resulting in the variation in isotope values among individuals 
likely being much greater than within-individual variation 
(Figure 1c, f). Under the assumptions of intra-niche 
variation, this would suggest the potential for individual 
dietary specialisation among juvenile white sharks. This is 
supported further by the broad range of teleost and elasmo-
branch prey identified in the diet of juvenile sharks (Hussey 
et al. 2012). Previous stable isotope profiles of white shark 
vertebrae from the North-East Pacific also identified a high 
degree of dietary specialisation, with isotopic trends similar 
to those observed in our data, but that study was focused 
on larger individuals (Kim et al. 2012).

Multiple nurseries
Carbon stable isotopes have been shown to be effective at 
discriminating the foraging habitats and migration patterns 
of animals (France 1995; Hobson 1999). This is based 
on the premise that carbon stable isotopes in a consumer 
fractionate conservatively through food webs and thus 
represent the isotope value of the baseline carbon sources 
where the animal feeds. In marine systems, pelagic and 
offshore food webs are readily distinguishable because 
carbon in pelagic systems is driven by photosynthesis and 
tends to be depleted in 13C. Large-scale latitudinal gradients 
in stable isotope values can also occur and have been used 
to identify the habitat and migration of a range of species 
(Best and Schell 1996; Cherel and Hobson 2007). Off South 
Africa, there is a known gradient of δ13C values, such that 
13C enriches along the eastern coast from KwaZulu-Natal to 
the Western Cape (Hill et al. 2006). Moreover, gradients in 
δ13C values are documented in the tropical western Indian 
Ocean (Ménard et al. 2007) and across the sub-Antarctic 
front (Best and Schell 1996; Cherel and Hobson 2007).

The large variation in δ13C values of juvenile white 
sharks post-birth and their consistency over time prior to 
convergence could suggest these animals inhabit distinct 
geographic locations or nurseries. Multiple nurseries could 
occur in either coastal or pelagic waters, or both, or could 

be shared across continents. Transoceanic dispersal 
events have been recorded for white sharks (Blower et 
al. 2012), indicating that South African females may give 
birth in Australian waters or that juveniles are capable of 
transoceanic migrations (Bruce and Bradford 2008). A 
subadult female white shark was documented making a 
return migration to Australia from South Africa (Bonfil et 
al. 2005), although such migration events have yet to be 
observed in smaller individuals. Alternatively, nurseries 
could be distributed along the western Indian Ocean coast 
(i.e. by latitude). The only large, near-term, pregnant female 
white shark observed in the region was caught off Kenya, 
supporting this hypothesis (Cliff et al. 2000). Furthermore, 
in Australia, satellite telemetry data have revealed that 
juvenile white sharks inhabit two distinct nursery areas, 
with few individuals migrating between habitats (Bruce and 
Bradford 2012).

Physiological constraints
The most obvious physiological effect on organismal stable 
isotope values relates to the effect of fasting. Once an 
animal fasts, i.e. no longer consumes food, catabolism 
occurs, leading to preferential excretion of 14N (Hobson 
et al. 1993). This excretion results in higher δ15N values in 
a consumer, which confounds quantification of the actual 
diet of that individual. This relationship is likely ubiquitous 
across species that fast and/or experience periods of low 
food availability (i.e. poor condition), because most adapt to 
reduced food intake through identical metabolic processes. 
The magnitude of the effect of fasting on stable isotope 
values, however, is thought to be variable. For organisms 
that use high levels of protein and maintain low lipid stores 
or have high energetic requirements (e.g. for long-distance 
migrations), fasting is thought to result in a greater change in 
δ15N values (Cherel et al. 2005). 

The consequences of fasting effects on a population of a 
species with highly variable life-history dynamics, such as 
partial migrations, where some individuals remain resident 
while others commonly migrate, could lead to large among-
individual variation in δ15N values even if individuals feed on 
a similar diet (with similar δ15N values). There is evidence 
to support white sharks feeding during offshore migrations 
(Carlisle et al. 2012); but individuals returning to coastal 
waters were observed to be in poorer condition, and mixing 
models indicated a reduced level of foraging in pelagic 
versus coastal environments (Chapple et al. 2011; Carlisle 
et al. 2012). The extent of fasting or reduced foraging of 
white sharks during offshore migrations off southern Africa 
is unknown, but variable residency and migration dynamics 
of animals within the population may explain the observed 
isotopic patterns. Alternatively, highly variable growth may 
occur during the juvenile life stage, driving physiological 
variation in the uptake of stable isotopes, for example 
through variable fractionation. For Atlantic salmon Salmo 
salar, varying growth rates contributed to variation in δ15N 
values among individuals held under controlled conditions 
(Trueman et al. 2005). Although δ13C values are reportedly 
not affected by periods of fasting (Hobson and Clark 1993), 
there have been mixed results (Cherel et al. 2005; Williams 
et al. 2007) and little is known regarding these effects in 
sharks. 
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The benefits of stable isotopes (δ15N and δ13C) incorporated 
into a multidisciplinary approach

While the four above-mentioned explanations are all 
plausible, the implications of each for the management of 
the white shark population off southern Africa are highly 
variable. These management implications are summarised 
in Figure 2, ranked from low to high priority. In the broader 
stable isotope literature, it is likely that many studies exist 
where several equally plausible explanations were possible, 
but only one was argued. In turn, the selected interpreta-
tion may have influenced the perceived conservation status 
of a species or prospective management actions (Bond 
and Diamond 2011). Indeed, it is only through multidiscipli-
nary approaches that the initial interpretation of bulk stable 
isotope data (bulk refers to analysis of whole tissues, as 
opposed to individual compounds), when used as a stand-
alone tool, is being challenged. This certainly does not 
devalue the application of bulk stable isotopes in ecology; 
science must advance and build. Importantly though, it 
reinforces the need for investigators to be cognitive of how 
they interpret and ‘sell’ their data and to consider integrating 

stable isotopes in multidisciplinary frameworks where 
possible. This is particularly important given the role of 
science, including stable isotope ecology, in assisting and 
developing conservation and management actions. Here, 
we provide a few examples of recently adopted multidiscipli-
nary isotopic frameworks.

Stable isotope analysis provides a single δ15N and δ13C 
value for a consumer, whereas CSIA-AA can provide both 
a δ15N and a δ13C value of the organism (trophic amino 
acids) and of the baseline of the system (source amino 
acids) (McClelland and Montoya 2002). This overcomes 
the limitation of establishing isotopic baselines for the 
ecosystems an animal inhabits, and is particularly useful 
for animals that are highly migratory. Through combining 
these two approaches, it has been possible to determine 
reliable estimates of trophic position (TP; the level at which 
an animal feeds in a food web) for two mesopelagic fish 
families (Myctophidae and Stomiidae) across five global 
regions (Choy et al. 2012). While bulk δ15N values produced 
variable estimates of TP, CSIA-AA revealed that TP was 
uniform and the observed variation was a result of region-
specific water body biogeochemistry (Choy et al. 2012). 
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Similarly, stable isotope values of herbivorous green turtles 
Chelonia mydas sampled at a nesting ground suggested 
that individuals fed over several trophic levels, indicating 
carnivory (Vander Zanden et al. 2013). CSIA-AA revealed 
that these results were due to variation in baseline seagrass 
isotope values between foraging grounds; consequently all 
individuals actually fed at a similar TP (Vander Zanden et 
al. 2013). 

For the above juvenile white shark case study, CSIA-AA 
could confirm whether variation in stable isotope values 
is caused by individuals feeding on different prey in the 
same location, or by individuals inhabiting different regions 
but feeding on similar prey types. If a combined bulk 
stable isotope and CSIA-AA approach identified that these 
animals inhabited different regions, i.e. multiple nursery 
grounds, this would have important consequences for 
regional management (Figure 2). While white sharks are 
protected in South Africa, no legal protective framework 
exists in other Western Indian Ocean (WIO) countries and 
sharks are considered to be overexploited by fisheries in 
the region (Smale 2008). During the newborn/juvenile life 
stage, white sharks are not easily distinguishable from other 
species; thus it is possible that they are unknowingly part 
of fisheries catches. On the contrary, if CSIA-AA revealed 
juveniles were foraging at different trophic levels in the 
same location, this would indicate a single nursery for this 
population, simplifying management efforts.

Telemetry to monitor remotely the movements of animals 
can also be combined with stable isotope data (Hussey et 
al. 2015b). To date, telemetry methods are both improving 
confidence in isotope data interpretation and proposed 
management actions (Cunjak et al. 2005; Ceriani et 
al. 2012; Seminoff et al. 2012), but also are revealing 
dichotomies between movement patterns and previous 
inferences from stable isotope data. For example, stable 
isotope profiles of multiple tissues from individual bull 
sharks Carcharhinus leucas inhabiting a riverine/estuarine 
environment indicated individuals displayed a high degree 
of dietary specialisation over time (Matich et al. 2011). 
Recently, through combining stable isotope analysis with 
telemetry, it was found that these sharks became more 
generalised on a seasonal basis to take advantage of prey 
pulses (Matich and Heithaus 2013). Stable isotope analysis 
of multiple tissues of a highly threatened leatherback turtle 
Dermochelys coriacea population off French Guiana also 
revealed two distinct foraging groups that agreed with 
previous satellite tracking data (Caut et al. 2008). 

For juvenile white sharks, both acoustic and satellite 
telemetry data could reveal periods of residency, 
geographical areas of residency, and scales and timing 
of movements. These data would confirm if the observed 
isotopic trends relate to the use of multiple nursery grounds, 
the physiological effect of some individuals undertaking 
large-scale movements compared to more-resident individ-
uals, and individual and population level feeding ecology 
characteristics (e.g. specialists vs generalists) (Figure 2). 
These data would also confirm if, in fact, the variation in 
stable isotope values relates to the movement and habitats 
occupied by juveniles or if they were maternally inherited. 
If the latter were the case, the first isotope data following 
birth would allow unique insights into the foraging location 

and trophic position of pregnant female white sharks prior 
to parturition (Figure 2). For global white shark popula-
tions, knowledge of gestation and parturition of females is 
extremely limited, given that only a few pregnant individuals 
have been caught and dissected (Francis 1996; Uchida et 
al. 1996; Christiansen et al. 2014b). The temporal trend of 
each individual, however, would only allow estimation of the 
dilution of the maternal isotope values and incorporation 
rate of the juvenile’s diet, with limited management impact 
(Figure 2). 

Combining genetic analysis with stable isotope analysis 
is also leading to improved insights regarding animal 
migration patterns and population connectivity. Populations 
of Wilson’s warblers Wilsonia pusilla on the North American 
east and west coasts were determined to be significantly 
different, based on microsatellite DNA (Clegg et al. 2003). 
By combining this result with hydrogen stable isotope 
values, breeding latitude was estimated, allowing for the 
description of population connectivity between breeding and 
overwintering sites. For adult female southern right whales 
Eubalena australis sampled at a nursery ground, genetically 
related individuals had similar δ15N and δ13C isotope values, 
indicating maternally inherited site fidelity to summer 
feeding grounds (Valenzuela et al. 2009).

White sharks in Australia have been shown to exhibit 
philopatric behaviour (Pardini et al. 2001; Blower et al. 2012), 
with sporadic transoceanic dispersal events (Blower et al. 
2012). Equally, juvenile sharks have been documented 
using multiple nursery areas with relatively restricted home 
ranges (Bruce and Bradford 2012). These behaviours would 
indicate that if juvenile sharks off southern Africa are using 
different nursery grounds, then these individuals might be 
genetically distinct. It would then be expected that these 
genetically distinct groups of juveniles would have unique 
isotope values reflecting their foraging locations. For this 
juvenile white shark case study, correlations between stable 
isotope values and genetic diversity would provide support 
for multiple nurseries and confirm philopatric behaviour 
for this species, with major implications for management 
(Figure 2). 

Conclusion

In modern science, conveying a message to the broader 
scientific and management community is typically restricted 
by the word count allowed by the publishing journal. 
Moreover, when analysing and interpreting large, complex, 
ecological datasets, common in the data-rich world of 
today’s science, drawing a single explanation or conclu-
sion is difficult and often impossible. Yet, offering multiple 
interpretations is now viewed as speculative or the result of 
poor experimental design and has become frowned upon 
by a majority of scientific journal reviewers. Consequently, 
researchers are commonly forced into selecting a single 
explanation to best describe the trends observed in their 
data. However, ignoring or avoiding alternative explana-
tions of a dataset to avoid negative reviews can not only 
undermine the overall message, but also hinder the 
scientific process. Ultimately, this can limit the development 
of effective management and conservation plans, particu-
larly those that are adaptive. This case study on juvenile 
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white shark vertebral stable isotope profiles revealed that 
multiple interpretations could be provided that equally 
explain the observed isotopic trends. One of these could 
be highlighted preferentially, dependent on the motive 
of the study or researcher bias, but this could be either to 
the benefit or detriment of future white shark research and 
management actions. In this instance, it could be argued 
that additional research should be carried out prior to 
publishing data, but in these pressing environmental times 
– for example, 46.8% of chondricthyan species are currently 
listed as Data Deficient (Dulvy et al. 2014) – decisions are 
required based on the best information currently available. 
We promote the use of stable isotopes incorporated in a 
multidisciplinary framework to improve our confidence in 
interpreting data, particularly when outcomes may inform 
conservation and management actions. If this is not 
possible, quality stable isotope datasets, with appropriate 
statistical analyses and potential alternative explanations, 
should be clearly presented. 
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