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Mechanisms driving selection of body size and growth rate in wild marine

vertebrates are poorly understood, thus limiting knowledge of their fitness

costs at ecological, physiological and genetic scales. Here, we indirectly

tested whether selection for size-related traits of juvenile sharks that inhabit

a nursery hosting two dichotomous habitats, protected mangroves (low

predation risk) and exposed seagrass beds (high predation risk), is influ-

enced by their foraging behaviour. Juvenile sharks displayed a continuum

of foraging strategies between mangrove and seagrass areas, with some

individuals preferentially feeding in one habitat over another. Foraging

habitat was correlated with growth rate, whereby slower growing, smaller

individuals fed predominantly in sheltered mangroves, whereas larger,

faster growing animals fed over exposed seagrass. Concomitantly, tracked

juveniles undertook variable movement behaviours across both the low

and high predation risk habitat. These data provide supporting evidence

for the hypothesis that directional selection favouring smaller size and

slower growth rate, both heritable traits in this shark population, may be

driven by variability in foraging behaviour and predation risk. Such evol-

utionary pathways may be critical to adaptation within predator-driven

marine ecosystems.
1. Background
Spatial plasticity in selection is known to occur as a consequence of the biotic

and abiotic conditions that shape the sea or landscape [1]. This dynamicity

naturally leads to population divergence through localized adaptation,

whereby traits in one population are favoured based on local conditions, irre-

spective of the fitness consequences or adaptive value of those traits among
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Figure 1. The interconnected nursery habitat at Bimini Islands in the Baha-
mas where juvenile lemon sharks (Negaprion brevirostris) remain resident for
up to 3 years. The red line indicates the mangrove fringed shoreline of the
nursery region. The aerial photograph depicts seagrass beds in the lagoon
areas. (Online version in colour.)
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other populations [2], or even at later life stages (e.g. [3]).

Nonetheless, selection for large size and fast growth has

long been considered a central force that dictates population

fitness and evolutionary success [4,5]. Larger size allows

organisms to mature earlier [6], consume a wider size spec-

trum of prey to maximize growth and fitness [7], improves

manoeuvrability to locate prey and evade predators [8],

increases survival potential during extreme conditions [9]

and when exposed to disease [10], as well as improves repro-

ductive output in terms of both the number and size of young

[11]. Indeed, larger individuals within a cohort have reduced

predation risk relative to conspecifics within that same age

class (the ‘bigger is better’ hypothesis [12]). Faster growth is

similarly thought to increase survival, because organisms

require less time to transit through juvenile phases when

they are most vulnerable to predators (the ‘stage-duration’

hypothesis [13]).

More recent data, however, are questioning the benefits of

larger size and faster growth. Instead, negative fitness conse-

quences have been shown as a direct result of increased risk

behaviours to facilitate larger size and faster growth [14,15].

For example, heightened locomotory performance associated

with larger size can drive foraging activity over larger spatial

scales, which in turn requires a threshold of consumed prey

to balance the energetic cost of those movements. Expansion

of home ranges also increases encounter probabilities with

predators, heightening the potential for reduced fitness

through both unprofitable foraging excursions and stress

related non-consumptive predator interactions [16]. This is

further exacerbated at early life stages when individuals are

still naive and developing foraging skills [17].

The direction of selection for body size and growth rate,

i.e. larger versus smaller body size and faster versus slower

growth rate, is likely more plastic than originally thought

and an important component of adaptation within any

predator-driven marine ecosystem. Yet our understanding

of the mechanisms that drive selection for size remains

limited. Typically, to examine the mechanisms of selection,

one of four approaches is used: experimental studies

(e.g. size-selective predation), selection or other genetic exper-

iments under laboratory conditions, quantitative selection

analysis and correlational approaches using field data [5].

Most adopt experimental and laboratory-based studies

where parameters can easily be controlled and manipulated,

but how these results transfer to natural conditions is unclear.

For aquatic organisms, specifically large marine vertebrates,

field studies provide the only viable option to determine

the mechanisms of selection but these are typically hindered

by logistical challenges.

An exhaustively sampled population of juvenile lemon

sharks, Negaprion brevirostris (Poey, 1868) at Bimini, Bahamas

presents a unique model to overcome these limitations and

allow examination of the mechanisms underpinning selection

and adaptation in a large bodied marine vertebrate. Lemon

sharks are born and remain within the Bimini nursery for a

minimum of 3 years [18], with at least some mature females

known to be philopatric to natal sites for parturition [19]. The

nursery habitat consists of seagrass beds fringed by dense man-

groves along the shoreline that provide abundant prey

resources for developing juveniles during their residency

phase (figure 1). Using quantitative selection analysis, DiBat-

tista et al. [3] examined approximately 700 individuals over a

4-year period, encompassing more than 99% of the total
juveniles born in the Bimini nursery. The authors demonstrated

that smaller, slower growing lemon sharks were selected for,

facilitating an evolutionary trajectory that may be offset by

selection for faster growth and larger size during later life

stages or at other nursery sites [20,21]. A subsequent genetic

analysis and pedigree reconstruction of this population con-

firmed heritability of these size-related traits [22]. The

mechanism proposed for driving selection of slower growth

and smaller size in these sharks was preferential foraging

within protected fringing mangroves, where predator encoun-

ter rates are much lower compared with risky foraging

behaviour over exposed seagrass beds [3]. Indeed, sub-adult

and adult lemon sharks are the main predators of juveniles

on the exposed seagrass beds in the nursery [23–25].

Stable isotopes provide a method to systematically track

energy flow within marine ecosystems, allowing differen-

tiation of the proportional importance of distinct baseline

producers (or habitats) to consumer diets [26]. For example,

when an animal consumes prey, preferential loss of the

lighter carbon isotope, 12C, compared to the heavier isotope,
13C occurs at each hierarchical level of consumption in a food

web [27]. Consequently, if carbon isotope values (d13C) of

prey that reside in distinct habitats within an ecosystem can

be readily distinguished, isotope values of predators that con-

sume that prey can then be used to retrospectively track their

foraging locations [28]. Serial sampling of individual preda-

tors, through capture and recapture, can then be used to

examine inter-and intra-individual variation in foraging

behaviours over time. An additional isotopic tracer, sulfur

http://rspb.royalsocietypublishing.org/
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(d34S), which exhibits minimal fractionation between consu-

mer and prey, can also provide a novel proxy to identify

individual variation in consumer foraging locations, thus

complementing the more traditional d13C approach [29].

A combined stable isotope (d13C and d34S), field sampling

and telemetry approach was adopted to test the proposed

hypothesis of localized selection within the juvenile lemon

shark population at Bimini. Carbon stable isotope values of

both juvenile lemon sharks and their most common teleost

prey group (family Gerreidae) were measured. This prey

group was targeted in both mangrove and seagrass habitats

given their dominance in the diet of juvenile lemon sharks

[30], the known distinct d13C values of these two habitats [31]

and previous work discriminating d13C values of Gerreidae

fishes sampled in mangrove and seagrass [32]. Carbon isotope

data for predator and prey were then incorporated into an

individual-level hierarchical Bayesian mixing model to quan-

tify inter-individual variation in foraging locations. A subset

of juvenile sharks were; (i) analysed for d34S to provide a

second (complementary) tracer and (ii) sampled at two time

points 1 year apart to examine uniformity in d13C isotope

values as a measure of consistent foraging behaviour.

Growth rates derived from field morphometric data on recap-

tured individuals were used to test if slow and fast growth were

correlated with foraging in mangrove and seagrass habitats,

respectively. Finally, acoustic telemetry tracking of juvenile

sharks was used to examine variation in habitat use relative

to the predation risk associated with the occurrence of sub-

adult sharks. Specifically, we tested whether juvenile lemon

sharks show variable growth rates and foraging strategies

along the mangrove–seagrass isotopic continuum, which

would be consistent with the hypothesis that the trade-off

between foraging behaviour and predation risk drives

known selection for small juvenile size in this population.
2. Material and methods
(a) Study site
The subtropical Bimini Islands are located on the western edge of

the Great Bahama Bank (25844 N, 79816 W; figure 1). The two

main islands are separated by a shallow central lagoon and are

predominantly fringed by red mangroves (Rhizophora mangle).

This study focused on the north island’s inner shoreline, the

North Sound and Shark Land, both previously identified as an

interconnected lemon shark nursery [19] (figure 1). This area is

characterized by two distinct habitats, the mangrove fringed

shoreline and shallow seagrass beds dominated by turtle grass

(Thalassia testudinum) and to a lesser extent (Halodule wrightii),
interspersed with areas of exposed sand substrate.

(b) Sample collection and preparation
Juvenile lemon sharks were captured using monofilament

gillnets and biological data were recorded (electronic supplemen-

tary material, S1). During processing, a fin clip was taken from

the trailing edge of the anal fin and stored in 20% DMSO.

Sharks were then placed in a holding pen for recovery and

released back into the nursery. This annual population census

of juvenile lemon sharks has been ongoing for the past

21 years, but for the purposes of this study, capture and morpho-

metric data (size, sex and umbilical scar) were used from

individuals sampled between 2005 and 2010. For the stable iso-

tope component of the analysis, we used fin clips taken from

individuals captured in 2009 and 2010, including multiple
animals that were recaptured following periods at liberty. The

healing of the umbilical connection ranked from open wound

(newborn–neonate) to healed (more than or equal to 1 year old

juvenile) was used to assign age class.

To define the carbon/sulfur source endpoints, seagrass

blades (n ¼ 3) and mangrove leaves (n ¼ 3) from exposed sea-

grass beds in the central area of the nursery and from fringing

habitats, respectively, were sampled. To sample the principle

prey species of juvenile lemon sharks, mojarra (Eucinostomus
spp.) [30], a hand-pulled seine net (75 m length, 2 m depth and

1 cm stretched mesh size) was closed in a parallel direction to

the shoreline and pursed. Captured fish were retained, tissue

sampled and biological data recorded (electronic supplementary

material, S2). All samples were processed and then analysed for

carbon (d13C) and a subset of samples for sulfur (d34S) using an

elemental analyser (Costech 4010) interfaced to a Thermo Finni-

gan DeltaPLUS mass spectrometer (electronic supplementary

material, S3). Nitrogen isotope data (d15N) were also measured

for all samples to allow presentation of sharks and primary

prey in isotopic space (figure 2).

(c) Telemetry tracking
To track the movements of newborn/juvenile (less than 100 cm

precaudal length (PCL)) and sub-adult (more than 100 cm PCL)

lemon sharks, individuals were captured using either monofila-

ment gill nets (as described above) or rod and line. On capture,

an acoustic transmitter (Sonotronics—individually coded continu-

ous signal tag; 68–78 KHz) was surgically implanted into each

shark or externally attached and standard morphometric measure-

ments recorded. Following release, sharks were actively tracked

using a hydrophone (Sonotronics, DH4) and receiver (Sonotronics,

USR-96) mounted on a small flat-bottomed skiff for periods up to

48 h. Locations were recorded every 5–15 min with a hand-held

GPS (Garmin 72H) along with a compass bearing and the distance

to the shark estimated (to nearest 5 m based on audible signal

intensity; see [25] for details).

(d) Analyses
Previous work has shown distinct d13C and d34S isotopic differ-

ences between mangrove versus seagrass food webs [31,33]

and distinct d13C isotope profiles for individual Eucinostomus
spp. sampled within those respective habitats [32]. We first

examine if d13C and d34S values of mangrove and seagrass in

Bimini are distinct and if juvenile sharks show a large range in

d13C and d34S values that are highly correlated, as would be pre-

dicted. We then assume that the d13C values of Eucinostomus spp.

sampled at Bimini are representative of the distinct carbon source

habitats (mangrove versus seagrass) where they occur. ANCOVA

was used to test for differences in d13C values of Eucinostoimus
spp. between habitats while accounting for individual size

using lme in R (R Development Core Team, 2014).

A hierarchical Bayesian mixing model was constructed to

examine individual variation in the foraging locations of 1–3

year old sharks within the nursery based on consumption

of Eucinostomus spp. Specifically, the model quantified the

percentage contributions of mangrove- and seagrass-origin

Eucinostomus spp. compared to the d13C values of individual

sharks (i.e. sharks feeding exclusively on prey in seagrass, man-

grove or some combination of the two habitats). Bayesian mixing

models allow for propagation of uncertainty into estimates of

posterior probability distributions of contributions to isotopic

mixtures ([34]; for further model details, see the electronic

supplementary material, S4). All priors were set to be flat or dif-

fuse with source proportions assigned a Dirichlet prior (a ¼ 1),

which is a multivariate extension of the beta distribution (uni-

form on the compositional simplex). Posterior probability

distributions of parameters were quantified using Markov

http://rspb.royalsocietypublishing.org/
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prey (Eucinostomus spp.) sampled in fringing sheltered mangroves and on
exposed seagrass beds and predators sampled throughout the nursery.
Each point shows the estimated proportional contribution of mangrove-
derived prey to each of the 62 individual sharks, with lines representing
+1 s.d. Individual sharks were stacked based on ranked carbon stable
isotope proportions.
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chain Monte Carlo (MCMC) sampling implemented in JAGS in R

[35]. Three parallel chains, each with 150 000 iterations and a

burn-in phase of 100 000 iterations were used, retaining every

other sample. All MCMC chains showed visual evidence of con-

vergence, exhibited low levels of auto-correlation and Gelman

and Rubin diagnostics were all less than 1.05.

To determine whether 1–2 year old lemon sharks consistently

foraged in the same habitat over time, d13C values of sharks cap-

tured in the nursery ground in 2009 and recaptured in 2010

following a year at liberty (n ¼ 19) were determined. To measure

individual foraging uniformity over the 1 year period, the differ-

ence of the mean (m1 2 m2) and standard deviation (s1 2 s2)

parameters between years and the normality of the data within

groups (y) were simultaneously estimated using a Bayesian t-test

approach, BEST in R [36]. A non-committal prior was used that

has minimal impact on the posterior distribution and the shape

of the data in each group described by a t-distribution [36]. The

posterior distribution of differences (mean and standard deviation)

and effect size were estimated, and the 95% high density intervals

(HDIs) were used to describe the credibility interval for each. If the

95% HDI is significantly above zero, the parameter estimates are

credibly different.

Growth rates of 1 and 2 year old recaptured sharks were then

calculated from the difference in length (PCL, cm) and mass (kg)

between capture and recapture, and multiplied by the total

number of days at liberty, where 365 days ¼ 1. We used one

year old sharks that were born in 2008 (sampling time points

2008 and 2009; isotopic data from 2009; n ¼ 9) and 2009

(sampling time points 2009 and 2010; isotopic data from 2010;

n ¼ 43) and 2 year old sharks born in 2007 (sampling time

periods 2008 and 2009, isotopic data 2009; n ¼ 6) and 2008

(sampling time periods 2009 and 2010, isotopic data 2010; n¼ 10).

This included nine individuals with growth data for both years

1 and 2 in the nursery ground. To examine whether the isotopic

values of these sharks were related to growth rate, the relation-

ship between d13C values for each individual and the

covariates of growth rate, age and sex were examined using a

mixed effects model fit with maximum likelihood in the
lme package in R. Growth rate, sex and age were included as

fixed effects and birth year as a random effect. An ANOVA

was used to compare models with progressively simplified

fixed effects. Linear regression was used to determine the

relationship between d13C values of the sharks (i.e. depleted
13C values, foraging in mangroves or enriched 13C values, fora-

ging in seagrass) and growth rate (i.e. slow versus fast). Only

sharks that were greater than or equal to 1 year and less than

3 years old were included in these analyses given (i) maternal

effects on isotopic signatures of less than 1 year old sharks and
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(ii) 3 year old animals start to make broader scale movements

within the nursery and lagoon areas. We focus solely on d13C

for the latter analyses given the correlation between d13C and

d34S values.

To examine whether habitat use of juvenile lemon sharks was

biased towards mangrove or exposed seagrass habitat as a

measure of predation risk, the mean (+s.d.) distance from

shore was calculated for each shark from all GPS locations

recorded per month. For individuals tracked at more than

1 month intervals, size was re-estimated based on growth rate

(or from recaptures) and a new mean distance-to-shoreline

value was calculated for that individual. Shark–shoreline dis-

tances were calculated using the Animal Movement extension

in ArcGIS. For sub-adult sharks, location data were divided by

tidal cycle (low versus high; data from the National Oceanic

and Atmospheric Administration) and data for all individuals

presented to show their overall distribution around the Bimini

Islands.
3. Results
(a) Ecosystem isotopic variation
The d13C and d34S values for mangrove leaves and seagrass

blades, the source endpoints in the nursery ground, were

markedly different (d13C ¼ 223.8+0.3‰ and 27.1+ 0.6‰

and d34S ¼ 216.9 and 12.0; mangrove and seagrass, respect-

ively) in agreement with previous findings [31].

Eucinostomus spp. sampled in mangrove (mean+ s.d.:

217.3‰+ 0.8) and seagrass habitats (213.4‰+1.2) had

significantly different d13C values that scaled accordingly

between the carbon source endpoints (F2,29¼ 42.77, p ,

0.0001; figure 2). There was no effect of size on d13C values

of Eucinostomus spp. For juvenile lemon sharks sampled

within the nursery in 2010 (n ¼ 62), d13C were highly variable

with a minimum and maximum value of 212.6‰ and

28.4‰ (range 4.2‰; figure 2). Equally, large variation in

d34S values was observed for the subset of sharks analysed

(n ¼ 15), ranging from a minimum of 20.4‰ to a maximum

of 5.7‰ (range ¼ 6.1‰). As predicted, the d13C and d34S
values of sharks were highly correlated further supporting

foraging across the mangrove–seagrass continuum (elec-

tronic supplementary material, figure S1). Juvenile sharks

ranged in size from 49.5 to 74.5 cm PCL (mean+ s.d. ¼

55.7+ 5.5 cm) and 1.1 to 5.5 kg (1.9+ 0.8 kg).
(b) Individual foraging behaviour
Our hierarchical Bayesian stable isotope-mixing model found

that individual sharks adopted variable foraging strategies.

The median proportional contribution of mangrove-derived

Eucinostomus spp. to the 62 individual sharks ranged from

73.9 to 7.4% (figure 4). The median shark was estimated to

feed on approximately 26.9% of mangrove-derived Eucinosto-
mus spp. As expected, the estimation of posterior

probabilities for individual sharks had some level of uncer-

tainty (figure 3). This uncertainty could be reduced by

treating individuals as random effects (rather than fixed

effects as implemented here), but we were primarily inter-

ested in estimating where individuals fell on the gradient

between mangrove and seagrass habitats. These data identify

that some sharks forage predominantly on Eucinostomus spp.

in mangrove habitat, others mostly on Eucinostomus spp. in

seagrass habitat, with the remaining shark foraging locations

scaling between the two habitats (figure 3).
(c) Temporal uniformity in foraging behaviour
For 1 and 2 year old sharks that were sampled both in 2009

and 2010 (n ¼ 18), d13C values were consistent between the

two sampling periods (mean central tendency (CT) ¼ 0.06;

95% HDI 20.69, 0.80 t17 ¼ 0.55; p ¼ 0.59), with only minor

variation (s.d. CT ¼ 0.11; 95% HDI 20.48, 0.73: 0.03–0.80)

and effect size (effect CT ¼ 0.01; 95% HDI 20.64, 0.72;

figure 4). This suggests that juvenile lemon sharks undertake

systematic individual-level foraging behaviour in mangrove,

seagrass or combined mangrove–seagrass habitats over an

annual cycle during their first 3 years in the nursery habitat.

http://rspb.royalsocietypublishing.org/


–13.5
0

2

4

6

8

10

45

50

55

60

65

70

75(a)

(b)

–12.5 –11.5
carbon isotope (d13C) value of individual lemon shark

gr
ow

th
 r

at
e 

of
 in

di
vi

du
al

 s
ha

rk
 (

cm
yr

–1
)

PC
L

 o
f 

in
di

vi
du

al
 s

ha
rk

 (
cm

)

–10.5 –9.5 –8.5

Figure 5. (a) Body size distribution versus carbon stable isotope values of
individual sharks born in 2007, 2008 and 2009 and sampled in 2010 (1 –
3 years old; dark to light blue circles, respectively) and; (b) the relationship
between growth rate of individual lemon sharks (Negaprion brevirostris; 1 and
2 year olds) calculated from field derived measurements and the mean
carbon isotope values (d13C) of fin tissue sampled from each shark at two
time points approximately 1 year apart. The d13C values range over a con-
tinuum from sharks feeding predominantly on prey in fringing sheltered
mangroves to those feeding on prey over exposed seagrass beds. The continu-
ous line depicts the fitted regression line for growth versus d13C values of
sharks and the dashed line the 95% CIs. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170166

6

 on April 5, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
(d) Foraging versus body size traits
One, 2 and 3 year old sharks had variable d13C values

that reflected the range of the two distinct foraging habitats.

For 1 year olds, a large proportion of individuals had d13C

values that were indicative of foraging in both seagrass and

mangrove habitats but predominantly on seagrass beds

(figure 5). For 2 and 3 year old individuals, the spread of

d13C values was more even. Three years old sharks, with

enriched 13C values indicative of foraging over seagrass

beds, were also larger (mean d13C values of 29.9+ 0.1 and

PCL of 71.2+ 4.3 for three most enriched 13C sharks versus

mean d13C values of 211.9+ 0.3 and PCL of 60.0+ 5.0 cm

for the three most depleted 13C sharks; figure 5a). Growth

rates for 1 and 2 year old sharks (n ¼ 52 and n ¼ 16, respect-

ively) ranged from 1.4 to 9.5 cm yr21 (PCL) and 20.4 to

1.7 kg yr21 (mass). Only PCL growth rate data were modelled

due to known error in body mass field measurements and the

confounding effect of recent feeding events, contributing up

to 5% of stomach mass to total body weight. The progress-

ively simplified mixed effect model found d13C values were

significantly affected by growth rate, but sex, age and birth
year had no effect. While growth variability was observed,

as would be expected under natural conditions, there was a

significant positive linear relationship between growth rate

and d13C values (F1,66¼ 11.97, p , 0.001; r2 ¼ 0.2; figure 5b).

Juvenile lemon sharks foraging predominantly in mangrove

habitats had significantly slower growth rates than those fora-

ging over seagrass beds, with growth rate increasing between

the two habitat endpoints.

(e) Variability in juvenile movements and predation risk
Tracked juvenile lemon sharks (n ¼ 19) displayed highly

variable movements with some individuals remaining predo-

minantly close to the mangroves versus others that occupied

exposed seagrass habitat (figure 6a). There was no effect of

animal size on the observed movement patterns (figure 6a).

A track of a newborn shark, measuring 44.3 cm PCL, ended

when it appeared to remain stationary for more than

10 min over exposed seagrass beds. Upon entering the

water, remains of the dead shark were found documenting

an active predation event (figure 6c). Tracking data for sub-

adult sharks (n ¼ 67) showed that they occupied both inshore

and offshore habitats throughout the Bimini Islands that was

dependent on tidal state, and thus suitable water depth to

manoeuvre and forage (figure 6b).
4. Discussion
Resolving the underlying mechanisms driving selection

processes in the wild, particularly for large, long-lived and

highly mobile marine organisms is complex and conse-

quently is often assumed rather than empirically tested [37].

Given known cannibalism and predation on juvenile lemon

sharks over exposed seagrass habitat by larger conspecifics

([23,24]; figure 6c), we used the distinct isotopic baselines of

mangrove versus seagrass to assess the foraging locations of

individual sharks. This facilitated an indirect test of the mech-

anism for negative directional selection acting on size-related

traits proposed by DiBattista et al. [3]. Carbon and sulfur iso-

tope values identified variable foraging strategies among

juvenile sharks, and hierarchical Bayesian mixing models

revealed that some individuals fed predominantly on prey

from mangrove habitat while others fed predominantly on

prey from seagrass habitat. This was supported by variable

movement among juveniles recorded in the field via acoustic

tracking. Foraging strategies were also correlated with

growth rates, whereby sharks that fed in sheltered mangrove

habitats had slower growth rates than those that fed over

exposed seagrass beds. These cumulative findings support

a continuum of foraging strategies by juvenile lemon sharks

between mangrove and seagrass habitat during their first

years of residency in the Bimini nursery. Concurrently,

there was a notable shift from 1 year old sharks feeding pre-

dominantly over seagrass to more evenly distributed foraging

over both habitats by age three. This provides evidence for a

size range of juveniles within the nursery where selection is

free to act, favouring smaller size and slower growth [3].

Our data provide compelling evidence that larger, faster

growing individuals do occur in the Bimini nursery habitat,

but where do these individuals originate from to allow for

continuing selection for small size given the much larger indi-

viduals at age and faster juvenile growth observed at other

nurseries [21,22]? We suggest that male-mediated gene flow
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and occasional stray pregnant females [38] at the adult stage

maintains selection for smaller size at Bimini through con-

strained local adaptation. Under this scenario, maladaptive

genes are continually introduced to Bimini, thus maintaining

a body size above the optimum and consequently promoting

selection. The larger juvenile lemon sharks seen at Marquesas

Key, Florida, for example, are genetically similar to the Bimini

sharks, suggesting gene flow between these two populations

[38]. Indeed, it would appear that selection for slow growth

and smaller size may be stronger at Bimini than other neigh-

bouring nursery grounds leading to a smaller equilibrium

body size.

The appearance of distinct behavioural foraging strategies

(over exposed seagrass versus in sheltered mangroves)

among these juvenile sharks may be attributable to under-

lying differences in personality. Juvenile lemon sharks (age

1–2 years) have been shown to display persistent individual

differences in the rate of movement within a novel open field
test at the Bimini nursery [39]. Importantly, the sharks

showed habituation in movement pattern over repeated

trials, indicating that this was a reaction to novelty and not

representative of general activity. Recent research also

suggests that personality variation is determined by an indi-

vidual’s environment and age-related experience as well as a

heritable component [40] that may be under strong selection

[41]. The mechanism driving the proposed continual selec-

tion for smaller size and slower growth at Bimini may

therefore be an effect of introduced maladaptive genes from

other populations that not only include individuals of

larger size and faster growth, but also personality variation.

Alternatively, this dichotomy could relate to differences in

habitat type among geographically separate nursery habitat.

For example, juvenile lemon sharks at Cape Canaveral,

Florida reside in an exposed coastal nursery habitat and

undertake seasonal migrations of up to 190 km, which con-

trasts with the fidelity and small home ranges of juveniles

http://rspb.royalsocietypublishing.org/
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at Bimini [42]. Selection for larger size and bolder persona-

lity traits may support this exploratory behaviour at Cape

Canaveral, despite the potential for increased predation

risk because of a lack of available refuging habitat

(i.e. sheltered mangrove). Moreover, evidence for gene flow

between these two geographically isolated populations

(Cape Canaveral and Bimini) has been shown [38].

Both carbon and sulfur isotopes and growth data unequivo-

cally show that juvenile sharks at Bimini adopt variable

foraging strategies with effects on growth rate and size, but

data are not available to directly quantify intra-specific preda-

tion rates. Substantial evidence within this exhaustively

studied system, however, supports predation on juvenile

lemon sharks within the nursery [23,24]. For example, telemetry

tracking data in this study, and that reported previously, found

that the sub-adult lemon shark population at Bimini have larger

home ranges and predominantly use exposed seagrass and

sand flats within the lagoon [43], a likely result of habitat struc-

ture (mangrove roots) and shallow water depths restricting the

size of sharks that can manoeuvre through the fringing man-

groves. Recently, Guttridge et al. [25] demonstrated that the

movements of juvenile lemon sharks in an adjacent nursery

area at Bimini (Bonefish Hole) were influenced by the presence

of sub-adult sharks in the area as it related to tidal changes in

water depth. These data suggested that juveniles make fine-

scale habitat selection decisions in response to intra-specific pre-

dation risk. Moreover, observations of juveniles feeding on prey

in the field were rare, which may also suggest a trade-off

between foraging and refuging [25], with impacts for both

body size and growth rate. Refuging and anti-predator avoid-

ance has been reported for several shark species and is

considered one of the fundamental behaviours associated

with coastal or estuarine nursery habitats [44]. The predomi-

nant use of sheltered, shallow habitats by juvenile lemon

sharks is also documented at two more nurseries in the Atlantic

Ocean (Cape Eleuthera in the Bahamas and Atol das Rocas in

Brazil) that have similar habitat structure to Bimini [45,46]. As

a result, the likelihood of predation in shallow waters areas

(particularly mangroves) is minimized both by habitat type,

water depth and known movements of the sub-adult lemon

shark population. By contrast, several shark predation events

have been reported while tracking juvenile lemon sharks

along the exposed nursery shoreline [24], including one of the

individuals tracked in this study (figure 6c). This includes trans-

mitted juveniles suddenly changing behaviour or being

detected in unexpected habitats, rapidly increasing swimming

speeds to unrealistic levels or as we report here, an acoustic

signal abruptly ending and the discovery of the remains of

the predated juvenile (figure 6c). Importantly, our data and pre-

vious juvenile tracking data reveal a range of behaviours, with

some juvenile sharks predominantly moving in the mangroves

or remaining very close to the mangrove edge, while similar-

sized individuals favour exposed seagrass habitats hundreds

of metres from shore ([24,46]; figure 6a), where large sharks

may co-occur (figure 6b; TL Guttridge 2017, unpublished data).
5. Conclusion
Through a combination of isotopically distinct habitats and

prey that reside in those habitats as well as careful consider-

ation of pragmatic assumptions (electronic supplementary

material, S5), fine-scale tracking of the foraging behaviour

of juvenile sharks within their nursery ground was possible.

Although several studies have tracked spatial movements of

animals using stable isotopes [47], this study represents one

of few that were able to elucidate foraging patterns over a

fine spatial scale. When combined with field sampling and

telemetry tracking, this allowed novel insights into body

size selection in a large marine vertebrate. Identifying the

mechanism driving selection for slower growth and smaller

size supports a growing body of work showing that bigger

is not always better and that size selection is more plastic

than originally thought. While an alternate explanation for

the observed variable growth rates could result from compe-

tition among conspecifics, the nursery ground is not resource

limited [48], aggression between juveniles has not previously

been reported over extensive monitoring periods [49] and

population density does not appear to be correlated with

the strength of selection acting on these size-related traits

[3]. Equally, while faster or slower growth rates may rep-

resent a form of adaptive phenotypic plasticity, whereby

individuals, for example, have lower growth rates in response

to poorer quality mangrove habitat, we favour evolutionary

change given the evidence of selection for smaller body size

and heritability of these traits in this population [3,22]. It is

likely that predator-dominated systems may influence size

selection and that the interplay of predator abundance,

personality and sociality, as well as available habitat types

(exposed versus refuges) at localized scales influenced by

broader scale variance in adaptation of mobile marine

species, shape the direction of selection.
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