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INTRODUCTION

The energy requirements and physiological needs
of individuals can change with sex and age, which
can result in individual-level differences in diet and
ecological interactions. For example, divergent nutri-
tional needs are hypothesized to drive sexual se -
gregation in several species of large herbivores
(Mysterud 2000). In African elephants Loxodonta
africana, females are constrained in their movements
during droughts because their dependent offspring
are less mobile (Stokke & du Toit 2002), and thus they
have limited access to resources. White-faced capu -
chins Cebus capucinus of different sex and re pro -
ductive status have different energy requirements
and different diets (Rose 1994). Identifying such
within-species differences in diet, as a result of age

and sex, is important for understanding a species’
ecology and for conservation and management efforts.

The beluga Delphinapterus leucas, an abundant
odontocete in Arctic waters, exhibits high levels of
sexual segregation and dimorphism, similar to other
marine mammals (Breed et al. 2006). In some popula-
tions, belugas are seasonally segregated by sex, such
that, in the summer, females form large groups that
can include their dependent calves, and males form
separate and smaller groups (Michaud 2005, Loseto
et al. 2006). Belugas can also exhibit age-related
habitat segregation, with larger and smaller individ-
uals in the Beaufort Sea using more offshore and
inshore habitats, respectively (Loseto et al. 2006).
Belugas are also dimorphic, with males being 1.4
times heavier than females (Stewart & Stewart 1989,
Michaud 2005). Additionally, females likely have dif-
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ferent energetic requirements from males during
their 20 mo lactation period (Brodie 1971, Sergeant
1973). The diet of belugas throughout the Arctic is
generally poorly understood, but these differences in
location, size, and nutrition requirements could lead
to sex- and age-related differences in diet, which has
been previously shown for some beluga populations
(e.g. Hudson Bay, Sergeant 1973; Beaufort Sea, Lo -
seto et al. 2009).

The beluga population of Cumberland Sound, Baf-
fin Island, Nunavut has been classified as threatened
by the Committee on the Status of Endangered
Wildlife in Canada, mainly because of low popula-
tion size (COSEWIC 2004). The population was com-
mercially exploited in the late 19th and early 20th
centuries, which brought the population size from an
estimated 8465 (SE = 426) belugas before whaling, to
around 500 in the 1980s (estimated from 2 aerial sur-
veys flown in 1985 and 1986, resulting in counts of
407 to 442 belugas, not corrected for submerged ani-
mals; Richard et al. 1990, DFO 2005). Although the
population size has increased to 2017 (95% confi-
dence limits: 1553 to 2623; DFO 2005), it is clear that
the population has not yet fully recovered. Because
beluga are thought to feed on Greenland halibut
Reinhardtius hippoglossoides in the spring based
on Inuit traditional knowledge (Kilabuk 1998), the
emerging commercial fisheries on Greenland halibut
potentially threaten the recovery of the Cumberland
Sound beluga population. However, no studies have
examined beluga feeding on Greenland halibut in
this area.

In the present study, we use stable isotopes to
 evaluate the diet of belugas in Cumberland Sound.
Specifically, we compared the carbon (δ13C) and
nitrogen (δ15N) isotope values of beluga muscle and
skin to a suite of potential prey items collected in
Cumberland Sound to quantify diet. In addition, we
investigated the influence of sex, age, and time (from
1982 to 2009) on the diet of belugas. We hypothesize
that (1) male and female belugas will differ in their
 isotopic values as a result of differences in their ener-
getic and dietary requirements resulting from differ-
ences in reproductive demands and (2) old individu-
als will have higher δ15N values as a result of feeding
on higher trophic-level prey, as documented in other
marine mammals (Lesage et al. 2001). Our data set
covers 27 yr, which is long for a stable isotope ana -
lysis of diet in marine mammals (Hirons et al. 2001,
Lesage et al. 2001, Gaden & Stern 2010), and pro-
vides the opportunity to assess the long-term feeding
ecology of beluga in an ecosystem that has under-
gone significant changes in the past 30 yr, including

a reduction in sea ice coverage and duration (Comiso
2002, McKinney et al. 2012) and the invasion of spe-
cies from more southern regions, including the
capelin Mallotus villosus (Mallory et al. 2010, Gaston
et al. 2012).

MATERIALS AND METHODS

Sampling and stable isotope analysis

Beluga samples were opportunistically collected in
Cumberland Sound (65° 13’ N, 66°45’W; Fig. 1) from
harvests by the local community. Muscle and skin
samples were collected from each individual be -
tween 1982 and 2009 (samples collected in 14 out of
the 27 yr) from May to November. For some belugas,
the sex of the individuals was recorded (n = 68) based
on an examination of the reproductive tract and ven-
tral slits (Dahl et al. 2000; however, see Petersen et al.
2012 for a cautionary note about this method). In
addition, an established proxy measure for the age of
individuals (tooth growth layer group [GLG]; n = 76)
(Lockyer et al. 2007, Luque et al. 2007) was available
for some animals. Muscle and skin samples were pre-
served frozen in plastic bags.

The potential prey items of belugas that were col-
lected in Cumberland Sound in April 2008 and 2009
and in August 2007 to 2009 included capelin (n = 12),
Arctic char Salvelinus alpinus (n = 30), Greenland hali -
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Fig. 1. Cumberland Sound, in Nunavut, Canada, where most
beluga Delphinapterus leucas and potential prey items were 

sampled
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but (n = 76), shrimp Lebbeus polaris (n = 7), shorthorn
sculpin Myoxocephalus scorpius (n = 23), and poly-
chaetes (n = 7). Because no samples were available for
Arctic cod Boreogadus saida from Cumberland Sound,
we included the average of values from 2 other Arctic
locations (Coats Island: 62° 30’ N, 83° 00’W, 2004 to
2009, n = 36; Davis Strait: 65° 00’ N, 58° 00’W, 2004,
n = 10). The potential prey species were chosen be-
cause of their availability in the area and because they
have been identified as prey of be lugas in other popu-
lations (Seaman et al. 1982, Watts & Draper 1986,
 Kilabuk 1998, Dahl et al. 2000, Loseto et al. 2009).

Prior to stable isotope analysis, samples were
freeze-dried for 48 h and homogenized, and lipid was
extracted using a 2:1 solution of chloroform:methanol
as described in McMeans et al. (2009). Of each sam-
ple, ~0.5 mg was weighed into tin capsules and run
on a continuous-flow isotope-ratio mass spectrometer
(Delta V Advantage, Thermo Electron) at the Great
Lakes Institute for Environmental Research, Univer-
sity of Windsor. Stable isotopes are expressed as
delta (δ) values where δ X = 1000 × [(Rsample × Rstan-

dard
−1) − 1], and X = 15N or 13C, and R = the ratio of

15N:14N or 13C:12C. Replicate analyses of National
Institute of Standards and Technology (NIST) stan-
dard bovine muscle (NIST 8414, n = 37) and internal
lab standard (tilapia muscle, n = 7) yielded a preci-
sion (i.e. 1 SD) of 0.15 and 0.27‰ for δ15N and 0.05
and 0.08‰ for δ13C, respectively.

Statistical analysis

We evaluated the correlates of δ13C and δ15N val-
ues in beluga samples using a backwards-step-wise
approach with linear mixed-effects models using the
package nlme (Pinheiro et al. 2009) in the statistical
software R (R Development Core Team 2010). The
explanatory variables included in the initial model
were: (1) age class (categorical variable; immature
[3 to 11 GLGs] [Sergeant 1973], middle age [12 to 32
GLGs], and old [33 to 52 GLGs]), (2) sex, (3) season
(categorical variable based on the seasonal migration
of belugas: either ice-covered if the isotopic values
represent the diet when the belugas were feeding in
ice-covered water in the south of Cumberland Sound
[samples from May to end of July], or open water
 representing the period when belugas were feeding
in open water in the North of Cumberland Sound
[from August to the end of November]; these dates
take into account that stable isotope values reflect
the diet of the previous 70 to 75 d in belugas
[St Aubin et al. 1990] and that belugas move toward

the north of Cumberland Sound in June and go back
toward the south of Cumberland Sound in October
[Kilabuk 1998, Richard & Stewart 2009]), (4) the year
(continuous variable) the sample was harvested, as
well as (5) tissue sample type (skin or muscle). We
also tested for the interaction between all variables.
Finally, we included the ID of the individual as a ran-
dom effect because the analysis included 2 samples
per individual (skin and muscle). The significance of
fixed and random effects was evaluated by compar-
ing the fit of the models with and without the term of
interest using maximum likelihood ratio tests (χ2 dis-
tribution, df = the difference in the degrees of free-
dom between the nested models). We started with
the full model and examined interactions first, then
we removed the terms that did not improve the fit of
the model (p > 0.05). Lipids are enriched in carbon
compared to other tissues (DeNiro & Epstein 1977,
Tieszen et al. 1983). In order to investigate the effect
of differences in lipid on the carbon content within
and between tissues, we also investigated the effect
of age class, sex, and tissues on the carbon to nitro-
gen (C:N) ratios of the samples using similar statisti-
cal analysis, with ID as a random effect. Normality of
the data was examined using Shapiro tests (Royston
1982). Final models were inspected for the normality
of residuals using normal quantile-quantile plots,
and for heteroscedasticity using plots of the residuals
against fitted values.

To determine the diet of belugas, we used mixing
models for stable isotopic data within a Bayesian
framework based upon a Gaussian likelihood with
Dirichlet prior mixtures SIAR package (Parnell &
Jackson 2010) in R version 2.12.2 (R Development
Core Team 2010). Before performing this analysis,
we examined the differences in δ13C and δ15N values
between males and females, as well as between tis-
sue samples, using multivariate analysis of variance
in cluding ID as a fixed factor (MA NO VA with Pillai’s
trace test). Since both sex and tissue type had a sig-
nificant effect on δ13C and δ15N values (sex: F2,49 =
27.9, p < 0.0001; muscle: F2,49 = 26.6, p < 0.0001), we
analyzed skin and muscle samples separately and
treated males and females as different groups in the
mixing models for stable isotopic data analysis. Mus-
cle diet-tissue discrimination factors (mean ± SD)
were 1.52 ± 0.42 and 2.31 ± 1.02 for δ13C and δ15N,
respectively while skin diet-tissue discrimination fac-
tors were 2.29 ± 0.59 and 2.57 ± 0.52 for δ13C and
δ15N, respectively. Since there are no published val-
ues for diet-tissue discrimination factors in beluga
skin and muscle, discrimination factors included in
mixing models were obtained by taking the average
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of previously published values from other marine
mammals fed on known, high-protein diets (which
can affect discrimination factor; Gannes et al. 1997),
and included: harp seals Pago philus groenlandicus,
harbor seals Phoca vitulina and ringed seals Phoca
hispida (Hobson et al. 1996), killer whale Orcinus
orca (Caut et al. 2011), and bottlenose dolphins Tur-
siops truncatus (Fernández et al. 2011). Because we
found an effect of year on stable isotope values (see
‘Results’), we only included beluga samples from
2000 and after in the diet analysis to correspond with
when prey samples were obtained.

RESULTS

Muscle and skin samples were collected from
88 individuals. A summary of the data is provided
in Table 1. The length (mean ± SD) of all be -
lugas was 381.5 cm ± 60.44 cm and the GLG was
22.6 ± 12.64. Average values for δ13C and δ15N in
muscle and skin samples of females and males
are provided in Table 2.

The final model examining the cor-
relates of δ13C values included the
fixed factors age class, year, and tis-
sue type as well as the random factor
ID (Table 3). Old belugas had higher
δ13C than young ones (Fig. 2a). The
δ13C values decreased with year,
averaging 0.01‰ yr−1 (Fig. 3a). Skin
tissue samples had higher δ13C values
than muscles samples. The final
model examining the correlates of
δ15N values in cluded the factors age
class, year, and tissue type, as well as
the interaction between year and tis-
sue type (Table 3). Similarly to δ13C
values, δ15N values in old individuals
were higher than values in young
ones (Fig. 2b). The year had a strong
negative effect on δ15N, with values
decreasing by an average of 0.8‰
over 10 yr (Fig. 3b). Contrary to the
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                                                       Muscle                    Skin

Sex                Male                             40                         38
                      Female                         28                         22
                      Unknown                       8                           8
GLGs             3−11                             14                         13
                      12−32                           32                         26
                      33−52                           16                         13
                      not available               14                         16
Year               1982−1989                   15                         14
                      1990−1999                   26                         21
                      2000−2009                   35                         33
Month           May                                4                           6
                      Jun                                 7                           4
                      Jul                                38                         35
                      Aug                                9                           7
                      Sep                                 2                           2
                      Oct                                 0                           0
                      Nov                                2                           3
                      not available               14                         11

Table 1. Delphinapterus leucas. Beluga samples available 
for analysis. GLG: tooth growth layer group

Species n δ13C (‰) δ15N (‰)

Capelin Mallotus villosus 12 −19.52 ± 0.26 13.83 ± 0.47
Arctic char Salvelinus alpinus 30 −18.64 ± 0.57 14.06 ± 0.64
Arctic cod Boreogadus saida

Coats Island 36 −19.26 ± 0.65 14.81 ± 0.92
Davis Strait 8 −20.47 ± 0.32 13.49 ± 0.48
Average 44 −19.86 ± 0.48 14.15 ± 0.70

Halibut Reinhardtius 76 −18.83 ± 0.27 16.88 ± 0.65
hippoglossoides

Shorthorn sculpin 23 −17.28 ± 0.76 15.38 ± 1.13
Myoxocephalus scorpius

Red shrimp Lebbeus polaris 7 −18.23 ± 0.71 13.94 ± 0.40
Polychaetes 7 −16.46 ± 0.63 11.68 ± 0.93
Beluga female (skin) 22 −18.01 ± 0.29 16.58 ± 0.54
Beluga female (muscle) 28 −18.31 ± 0.33 16.67 ± 0.94
Beluga male (skin) 38 −17.87 ± 0.33 16.76 ± 0.67
Beluga male (muscle) 40 −18.02 ± 0.31 17.40 ± 1.28

Table 2. δ13C and δ15N (mean ± 1 SD) of the 7 prey species included in the
 mixing model to estimate diet as well as of beluga Delphinapterus leucas

males and females

δ13C Estimate SE χ2 df p

Intercept 22.65 10.91
Tissue, skin 0.20 0.040 19.33 1 <0.0001
Age, immature −0.19 0.091 16.03 2 0.0003
Age, old 0.29 0.094 16.03 2 0.0003
Year −0.020 0.005 12.44 1 0.0004
ID 14.41 1 0.0001

δ15N Estimate SE χ2 df p

Intercept 278.57 27.22
Tissue, skin −212.44 24.21
Year −0.13 0.014
Year:Tissue, skin 0.11 0.012 36.1 1 <0.0001
Age, immature −0.61 0.21 8.13 2 0.017
Age, old −0.034 0.22 8.13 2 0.017
ID 17.99 1 <0.0001

Table 3. Delphinapterus leucas. Predictors of δ13C and δ15N
(‰) obtained from linear mixed-model analyses. Fixed ef-
fects were removed by a backwards-step-wise process. For
δ15N, the p-values for both sex and growth layer group
(GLG) could not be evaluated because the interaction 

between these terms remained in the final model
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results for δ13C values, skin tissue samples had lower
δ15N values than muscle samples. The random effect
ID explained 62% of the variance in δ13C and 57% of
the variance in δ15N. The C:N ratio was only influ-
enced by the tissue sample type (χ2 = 135.24, df = 1,
p < 0.001), where skin samples had higher C:N ratios
than muscle samples (average ± S.D: 3.67 ± 0.16 and
3.32 ± 0.09, for skin and muscle respectively).

The stable isotope values from the 7 potential prey
items are shown in Table 2. Greenland halibut had
the highest δ15N values, while polychaetes had the
lowest (16.9 and 11.7‰, respectively). For δ13C val-
ues, polychaete worms had the highest value, while
capelin had the lowest value (−16.5 and −19.9‰,
respectively; Fig. 4). Because red shrimp and Arctic

char had similar isotopic values, they were grouped
for the analysis of diet. Mixing-model estimates of
dietary contributions based on both muscle and skin
samples identified cod as having the highest mean
dietary proportional contribution to the diet of both
males and females (contribution ranging from 0.37 to
0.50) followed by capelin (contribution ranging from
0.28 to 0.39). For both models, the isotopic value for
capelin and cod overlapped, making it difficult for
the models to differentiate between the 2 prey items
(indicated by coefficients of correlation between
capelin and cod generated by diagnostic plots in
SIAR varying from −0.53 to −0.93). However, cod
nitrogen values were marginally significantly higher
than capelin nitrogen values (t-test: t = 1.86, p = 0.06).
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Fig. 3. Delphinapterus leucas. Variation in (a) δ13C and (b) δ15N values from muscle and skin samples across years. Lines of
best fit from a simple linear regression with year as the independent variable (δ13C, skin: R2 = 0.11, p = 0.007, muscle: R2 = 0.12,
p = 0.002; δ15N, skin: R2 = 0.08, p = 0.02, muscle: R2 = 0.65, p < 0.001. The analysis in the text and Table 3 includes other 

independent variables in a linear mixed model)

Fig. 2. Delphinapterus leucas. (a) δ13C and (b) δ15N values of muscle and skin samples from females and males grouped by
age classe based on tooth growth layer groups (GLGs: immature 3−11 GLGs, middle age 12−32 GLGs, and old 33−53 GLGs).
Box-and-whisker plots: outside edges of the box = first and third quartiles, middle line = median, whiskers = 2 SD, and 

dots = outliers
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Models based on muscle and skin samples gave
slightly different results for the prey of secondary
importance. For males, all the other prey contributed
<0.1 to the diet (Fig. 5a,b). For females, the model
using muscle samples did not identify other impor-
tant prey (Fig. 5a), while the model using skin sam-
ples identified the group char−shrimp as prey of sec-
ondary importance (contribution of 0.12; Fig. 5b).

DISCUSSION

The results from our mixing-model analysis of diet,
examining either skin or muscle samples, suggest
that the diet of belugas was mainly composed of Arc-
tic cod and capelin. Results from Cumberland Sound

therefore agree with the observation that cod domi-
nates the diet of belugas in the Beaufort Sea and
Svalbard (Dahl et al. 2000, Loseto et al. 2009).
Capelin is also an important food source for belugas
in Western Hudson Bay and Svalbard (Watts &
Draper 1986, Dahl et al. 2000). Greenland halibut
was not one of the major prey items for belugas,
based on the stable isotope mixing models. Given
that beluga samples were collected between May
and November and that the turnover rate of beluga
skin is around 70 to 75 d (St Aubin et al. 1990), the
diet reconstructed from skin samples is likely to re -
present diet from approximately March to Septem-
ber. Our data therefore do not allow us to infer the
fall and winter diet of belugas, when some halibut
move to shallower water (<500 m; Peklova et al.
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Fig. 4. Delphinapterus leucas. Scatterplots of isotopic values of potential prey of beluga included in the diet analysis from (a)
muscle and (b) skin samples. Means ± SD. In addition, female, male, and unknown-sex belugas are shown corrected for
trophic discrimination by subtracting 1.52‰ and 2.31‰ for muscle carbon and nitrogen, respectively, as well as 2.29‰ 

and 2.57‰ for skin carbon and nitrogen. See Table 2 for scientific names of prey

Fig. 5. Delphinapterus leucas. Vioplot of the likely contribution of each prey in male and female beluga diet based on (a)
 muscle and (b) skin samples. Thin lines: the extent of all data points, black boxes: second and third quantiles (0.25−0.75),
and white dots: median values. A rotated kernel density is added at each side of the black boxes. See Table 2 for scientific 

names of prey

A
ut

ho
r c

op
y



Marcoux et al.: Variation in beluga diet

2012) and when belugas may feed on halibut. In
addition, we did not detect a seasonal trend in the
isotope values of belugas over the portion of the year
covered by our sample. Limitations of diet analysis
using mixing models include the sensitivity of the
model to the diet-tissue discrimination factor values
entered in the analysis as well as the choice and
number of potential prey in the model (Bond & Dia-
mond 2011). In addition, we used an average isotope
value for cod from Coats Island and Davis Strait
because we did not have samples from Cumberland
Sound. It is possible that stable isotope values for cod
in Cumberland Sound differ from the average value
from Coats Island and Davis Strait. Given the general
limitations of this type of analysis, results from our
mixing model should be treated as exploratory rather
than definitive (Parnell et al. 2010).

Our results suggest age segregation in the diet
and/or habitat use of belugas. Carbon isotope values
in both skin and muscle samples were significantly
greater in older belugas relative to values in younger
belugas; the C:N ratio did not vary with age class
and does not explain this relationship. In general,
benthic or  inshore species tend to have higher
δ13C values compared to pelagic or offshore species
(France 1995). These results suggest that older belu-
gas either inhabit different areas or feed more on
benthic species than younger individuals. The δ15N
values from old belugas were higher than in younger
individuals, providing evidence that old belugas feed
at higher trophic levels than younger conspecifics.
This difference might also result from belugas of dif-
ferent age classes feeding on the same prey species
but selecting different sizes of prey. However, our
sample size did not allow us to test this hypothesis.
Thus, both δ13C and δ15N provided evidence of age
segregation in Cumberland Sound belugas. Simi-
larly, belugas in the eastern Beaufort Sea and in the
St. Lawrence River showed differences in diet based
on size (a proxy of age) (Lesage et al. 2001, Loseto et
al. 2009). Alternative explanations to the differences
in isotopic values among ages include physiological
processes such as growth, pregnancy, lactation, and
fasting; however, these processes have been only
rarely investigated (Newsome et al. 2010).

Nitrogen isotope values in our beluga samples
showed a decreasing trend with year, indicating a
shift in beluga diet, or changes in the ecosystem that
have resulted in a shift in the isotope values of the
prey base. Over the period of our study, δ15N in bel-
uga muscle and skin samples decreased by an aver-
age of 0.08‰ yr−1. Anecdotal observations suggest
that capelin are becoming more abundant in Arctic

regions, representing a potential new prey resource
for belugas. This phenomenon has been observed by
examining the diets of Arctic birds such as thick-
billed murres Uria lomvia in southern Hudson Bay,
where capelins are replacing Arctic cod in their diet
(Mallory et al. 2010, Gaston et al. 2012). Capelin has
relatively lower values of δ15N compared to other fish
species sampled in our study such as Arctic cod and
Greenland halibut. A possible increase in the pro -
portion of capelin in the diet of belugas over the
years of this study, relative to a declining proportion
of Greenland halibut or Arctic cod in their diet (see
Kelly et al. 2010 for diet in the 1980s), could explain
the strong negative effect of year on δ15N values.

Over the study period (1982 to 2009), values of δ13C
decreased by 0.01‰ yr−1 in both muscle and skin
samples. A similar trend in δ13C values has been
observed in beluga liver in the Hudson Bay region
from 1984 to 2008, with a decrease of 0.026‰ yr−1

(Gaden & Stern 2010). Gaden & Stern (2010) explain
this decrease by an increase in the amount of time
spent foraging in more offshore regions, or by a shift
toward feeding more on pelagic sources. However,
decreasing δ13C values are also similar to the oceanic
13C Suess effect caused by the addition of anthro-
pogenic CO2 depleted in 13C (Gruber et al. 1999,
 Sonnerup et al. 1999, Körtzinger et al. 2003). Thus,
changes in beluga δ13C values might simply reflect
ecosystem changes as observed under the Suess
effect in other oceans. Regardless, the potential im -
pact of the likely increasing capelin on belugas in
Cumberland Sound and on Arctic ecosystems war-
rants further study. Either through direct or indirect
effects, larger capelin populations could increase
contaminant accumulation (McKinney et al. 2012)
and change the quantity and quality of nutrients and
fats (Thiemann et al. 2008, Leu et al. 2011) moving
through food webs.

Skin samples had higher values of δ13C than mus-
cle samples, while muscle samples were more en -
riched in δ15N compared to skin samples. Skin and
muscle tissues are expected to have different iso-
tope values because of differences in turnover rates
(Tieszen et al. 1983, Hobson & Clark 1992). Tissues
with shorter turnover rates provide insight into diet
over shorter time scales, whereas tissues with longer
turnover rates provide insight into diet over longer
time scales. The estimated complete turnover rate for
the skin of a captive beluga and a bottlenose dolphin
was between 70 and 75 d (Hicks et al. 1985, St Aubin
et al. 1990). There is no available turnover rate data
for beluga muscle, thus interpreting differences in
isotope values between the two tissues is difficult.
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Results from published studies on marine mammals
show no consistent difference between the carbon
and nitrogen values in skin and muscle samples
(Hobson et al. 1996, Abend & Smith 1997, Dehn &
Follmann 2007, Horstmann-Dehn et al. 2012). Since
diet analysis and isotopic comparison based on mus-
cle and skin samples gave slightly different results in
our study, we suggest that multiple tissues should be
investigated when available. However, a better
understanding of the metabolic properties of differ-
ent tissues is crucial to fully interpret diet analysis of
multiple tissues.
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