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A B S T R A C T   

The Arctic is warming rapidly, with concomitant sea ice losses and ecosystem changes. The animals most 
vulnerable to Arctic food web changes are long-lived and slow-growing such as marine mammals, which may not 
be able to adapt rapidly enough to respond to changes in their resource bases. To determine the current extent 
and sources of these resource bases, we examined isotopic and trophic niches for marine mammals in the Eu
ropean Arctic using skin carbon (δ13C) and nitrogen (δ 15N) stable isotope (SI) compositions from 10 species: 
blue, fin, humpback, minke, sperm and white whales, bearded and ringed seals, walruses and polar bears, and 
dietary fatty acids (FAs) in polar bears, walruses and most of the whale species listed here. SI values showed clear 
species separation by trophic behaviour and carbon sources. Bearded seals, walruses and white whales had the 
smallest isotopic niches; these species are all resident High Arctic species and are likely to be particularly 
vulnerable to changes in Arctic ecosystems. We found clear separation between FA groupings driven by pelagic, 
benthic and planktonic/algal sources: pelagic FAs in all whales, benthic FAs in walruses, and copepod/algae/ 
dinoflagellate FAs in polar bears, with some polar bear compositions approaching those of the whales and 
walruses. There is strong niche partitioning between study species with minimal functional redundancy, which 
could impact Arctic ecosystem structure and connectivity if populations of these large nutrient vectors are 
reduced or lost.   

1. Introduction 

Marine mammals in the High Arctic cover the trophic spectrum from 
planktivores to apex predators, pelagic to sympagic to benthic feeders, 
and from dietary generalists to specialists (Bluhm and Gradinger 2008). 
All the marine mammal species are K-selected, with relatively slow 
growth and reproduction, long life-spans and large maternal in
vestments, and may therefore be affected by rapid change in prey re
sources (Simmonds and Isaac 2007; Kovacs et al. 2011). Such changes 
can lead to e.g. lower availability of preferred resources, extended mi
grations or shorter foraging seasons (Víkingsson et al. 2015; Choy et al. 
2017; Choy et al., 2020; van Weelden et al. 2021). Quantifying feeding 
ecology in terms of food-web position, carbon sources and dietary 
specialisation is important to assess how these species may respond to 

current and future stressors. 
The marine mammal species assemblage of the Barents Sea is 

currently experiencing the combined effects of intense warming (the 
Arctic water mass around Svalbard warmed by around 0.9 ◦C between 
2005 and 2016 (Barton et al. 2018), and up to 4.5 ◦C of warming is 
projected for the Barents Sea by 2100 (Albouy et al. 2020)) and large 
reduction in sea ice duration, extent and thickness in the Arctic (Comiso 
and Hall 2014; Laidre et al. 2015) with concomitant increases in human 
activities (Kovacs et al. 2011; Stocker et al. 2020). Direct impacts on ice- 
reliant species such as reduction in breeding habitats can be identified 
easily, but impacts of changes in marine mammal prey bases and 
nutrient sources are more difficult to ascertain (Bluhm and Gradinger 
2008; Kovacs et al. 2011). 

To assess future ecological impacts from changes in prey and nutrient 
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sources, it is necessary to determine trophic and isotopic niche baselines. 
An isotopic niche is defined by an organism’s interactions with its 
environment, including its trophic position, nutrient sources and space 
use (Newsome et al. 2007; Shipley and Matich 2020). Carbon and ni
trogen stable isotope (SI) niche spaces and compositions of fatty acids 
(FAs) within an ecosystem can be used to assess the ecological niche of 
species or groups of organisms (Rossman et al. 2016). In the Barents Sea 
area, the isotope niche space axes are largely defined in a simple, linear 
way, with nitrogen isotope values (δ15N) increasing with relative trophic 
position and carbon isotope (δ13C) values increasing from pelagic to
wards benthic, from terrestrial towards marine and, in some areas, 
pelagic towards sympagic nutrient sources (Hobson et al., 1995; Hop 
et al., 2006; Søreide et al., 2013; Tamelander et al., 2006). Comparison 
of how niches are positioned relative to known species ecologies can 
allow detection of trophic function, cryptic, i.e. difficult to directly 
observe, ecology and ecological change (Rossman et al. 2016), and can 
be used to monitor ecosystem changes and predator-prey relationships 
over time. 

Specialist adaptation to a particular food source can be a successful 
strategy in stable environments, while animals in variable environments 
or animals that move over large distances benefit from more generalist 
foraging strategies (Isaac 2009; Berta and Lanzetti 2020). In a rapidly 
changing Arctic, it is likely that dietary specialisation and local resi
dency may increase species’ vulnerability. 

Arctic-resident marine mammals are likely to be more strongly 
impacted by changes in their local marine ecosystem than migratory, 
non-resident species, because they are less likely to shift to new areas if 
local prey resources and environmental conditions become less optimal 
(Learmonth et al. 2006; MacLeod 2009). This vulnerability is greatest 
for ice-reliant animals, such as ringed (Pusa hispida) and bearded seals 
(Erignathus barbatus) and polar bears (Ursus maritimus) (Kovacs et al. 
2011; Laidre et al. 2015), which can potentially be forced into subop
timal habitats, e.g. areas where access to preferred prey is diminished, 
leading to greater metabolic foraging costs (e.g. Laidre et al. 2008; 
Kovacs et al. 2011; Pagano et al. 2018). 

The degree of redundancy in a system defines to a large degree how 
prone the system will be to collapse or cascading impacts if individual 
species are extirpated (Sanders et al. 2018); redundancy is low in Arctic 
ecosystems (Murphy et al. 2016; Blanchet et al. 2019). 

In this study, we measure current trophic and isotopic niche prop
erties for the marine mammal species of the European Arctic. The 
studied species span the full range of ecosystem macrofauna, from 
obligate planktivores to apex carnivores, and include sympagic, pelagic, 
benthic and deep-sea feeding species, representing: 

Low-trophic level: pelagic zooplanktivores, blue whales (Balae
noptera musculus) (Christensen et al. 1992; Gavrilchuk et al. 2014; Tartu 
et al. 2020); zooplanktivores and piscivores, fin whales (Balaenoptera 
physalus) (Christensen et al. 1992; Víkingsson 1997; Gavrilchuk et al. 
2014; Víkingsson et al. 2015; Das et al. 2017; Tartu et al. 2020); 

Mid-trophic level: opportunistic species that feed on fish and in
vertebrates from pelagic and benthopelagic sources, humpback (Mega
ptera novaeangliae) and minke whales (Balaenoptera acutorostrata) (Haug 
et al. 2002; Gavrilchuk et al. 2014; Víkingsson et al. 2015); benthic 
bivalve specialists that occasionally feed on pinnipeds, walrus (Odobenus 
rosmarus) (Lowry and Fay 1984; Scotter et al. 2019); individual dietary 
specialists on zooplankton and fish making a generalist population, 
ringed seals (P. hispida) (Yurkowski et al. 2016; Bengtsson et al. 2020); 
and 

High-trophic level: benthic to benthopelagic fish and invertebrate 
specialists, bearded seals (E. barbatus) (Hjelset et al. 1999); benthope
lagic, Arctic fish and invertebrate specialists, white whales (Delphi
napterus leucas) (Dahl et al. 2000; Yurkowski et al. 2016; Loseto et al. 
2018; Choy et al. 2020); deep water squid and fish specialists, sperm 
whales (Physeter macrocephalus) (Martin and Clarke 1986; Christensen 
et al. 1992; Mendes et al. 2007); and polar bears (U. maritimus) that 
preferentially feed on Arctic seal species’ blubber but are opportunists, 

taking any available resources including small odontocete whales, 
whale carcasses and terrestrial food such as birds/eggs and reindeer, and 
even plants (Derocher et al. 2000; Derocher et al., 2002; Grahl-Nielsen 
et al. 2003; Iversen et al. 2013; Prop et al. 2015; Tartu et al. 2016a). 

Aside from narwhals, white and bowhead whales, the majority of the 
whales present in the Barents Sea are long-range migrants that spend the 
winter at lower latitudes in breeding areas and migrate north to their 
primary feeding grounds in nutrient-rich, high latitude waters in the 
spring and summer (Wassmann et al. 2006; Goldbogen et al. 2011; 
Avgar et al. 2014). Here in the colder waters, they feed on the abundant 
fish and crustacean populations, such as capelin and krill, to grow and 
replenish reserves used during breeding and migration, where feeding 
occurs to a much lesser extent and fasting is common (Brodie 1975; 
Oftedal 1993; Nash et al. 2013; Aguilar et al. 2014; Christiansen et al. 
2014; Aguilar and García-Vernet 2018; Bannister 2018). Blue and fin 
whales do feed during migration and a lower latitudes as well (Goldb
ogen et al. 2011; Lydersen et al. 2020), despite reduced availability of 
prey and increased metabolic costs of foraging. However, lower latitude 
foraging events are relatively brief compared to feeding in higher lati
tude, cold-water areas (Bailey et al. 2010; Silva et al. 2013; Silva et al., 
2019; Lydersen et al. 2020). These seasonal fasting and feeding patterns 
may, however, change opportunistically or with altered productivity 
(De Sá et al., 2009; Bortolotto et al. 2016; Findlay et al. 2017; Baines 
et al. 2017; Romagosa et al. 2020). 

White whales are ecologically different from the other whales stud
ied here as they are smaller, coastal and locally resident around Svalbard 
year-round (Lydersen et al. 2001; Vacquié-Garcia et al. 2018); bowheads 
and narwhal are also Arctic endemics that live in the Barents Region but 
these species are dependent on sympagic drift ice ecosystems and were 
not included in this study. 

Aside from orcas, polar bears are the apex predator in the Arctic 
marine ecosystem. The Barents Sea polar bear population is comprised 
of two ecotypes: one that tends to remain resident on Svalbard year- 
round, and the other that hunts on the progressively diminishing off- 
shore drift ice (Mauritzen et al. 2001; Tartu et al. 2016a; Blanchet 
et al. 2020). 

The Barents Sea pinniped species studied herein are year-round 
Arctic residents. Walrus and bearded seals prefer shallow, coastal wa
ters for feeding, while ringed seals also dive for prey in deep waters 
(Lowther et al. 2015; Hamilton et al., 2018; Hamilton et al., 2019). Sea 
ice decline is reducing the direct transfer of sympagic nutrients to the 
benthos (Grebmeier et al., 2006; McMahon et al., 2006), with potential 
for negative effects on benthic productivity levels and thus also impacts 
on benthic feeders such as walrus and bearded seals. All of the Arctic 
pinnipeds use ice for hauling out to rest and for pupping, nursing etc., 
with ringed seals being particularly reliant on ice edges and glacial 
fronts for feeding, and special snow-on-ice conditions for breeding 
(Kovacs et al. 2011). 

For each marine mammal species in this study, we investigate rela
tive food-web position, degree of specialization in terms of isotopic 
niche space, functional redundancy by niche overlap, and carbon sour
ces (i.e. pelagic, benthopelagic, benthic or terrestrial). Through these 
metrics we investigate species-specific resource use and discuss possible 
impacts of climate change. 

2. Methodology 

We measured the trophic sources and isotopic niches of marine 
mammals around Svalbard and surrounding areas of the Barents Sea 
using carbon and nitrogen SI compositions of skin, and individual 
dietary-origin FA compositions (Iverson et al. 2004) in blubber or sub
cutaneous fat. We used Bayesian stable isotope standard ellipse area, 
corrected for small sample size; SEAc (Jackson et al. 2011), as a metric of 
diversity and overlap in sources of nutrients. 
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2.1. Sampling 

Samples of skin and blubber were taken from blue, fin, humpback 
and sperm whales, using a custom-built biopsy dart launched from 
either an airgun or from a crossbow (see Tartu et al. (2020) and Lydersen 
et al. (2020) for full details) using a small boat or a helicopter to 
approach the whales. Samples from white whales were taken from 
physically restrained animals, captured for tracking studies (Vacquié- 
Garcia et al. 2018). Ringed and bearded seal samples were collected 
from animals shot during the annual sport hunt in Svalbard (Bengtsson 
et al. 2020). Minke whale samples were taken during the Norwegian 
commercial harvest. Samples from polar bears and walruses were taken 
from chemically immobilised individuals, according to the methods 
described in Scotter et al. (2019) and Tartu et al. (2016a). Sampling was 
approved, where relevant, by the National Animal Research Authority, 
the Norwegian Animal Care Authority and the Governor of Svalbard 
(Tartu et al., 2016a, 2020; Villanger et al., 2011; Scotter et al. 2019). 

2.2. Stable isotope analyses 

Stable isotope compositions of carbon and nitrogen were analysed in 
152 skin samples (21 blue, 27 fin, 6 humpback, 17 minke, 5 sperm and 
10 white whale samples, 5 bearded and 12 ringed seal samples, 37 
walrus samples, and 12 polar bear samples, see Table 1 for sampling by 
years). We freeze-dried these samples for 48 h at − 48 ◦C before ho
mogenisation. We removed lipids using a 2:1 chloroform-methanol 
solvent extraction, then thoroughly washed samples in deionised 
water, before drying and weighing into tin capsules for analysis. Isotope 
compositions were measured using a Delta V Advantage Thermo
scientific Continuous Flow Mass Spectrometer (Thermo Scientific, Bre
men, Germany) coupled to a 4010 Elemental Combustion System 
(Costech Instruments, Valencia, CA, USA), with analytical precision of 
0.2 ‰ for both δ15N and δ13C, as measured in NIST 1577c, tilapia 
muscle, USGS40 and urea standards. 

Table 1 
Stable isotope summary statistics by species and year of sampling, with sample numbers for fatty acids, in order of relative trophic position (rTP), with Bayesian ellipse 
area metrics (‰ squared); TA: total area, SEA: standard ellipse area, SEAc: standard ellipse area corrected for small sample size (Jackson et al. 2011).  

Name SI n Year Mean δ13C ± sd Mean δ15N ± sd rTP TA SEA SEAc FA n 

Blue whale 3 2014 − 18.8 ± 0.2 8.9 ± 0.3     4  
5 2015 − 19.0 ± 0.8 9.2 ± 0.2     3  
4 2016 − 16.7 ± 0.7 9.6 ± 0.6     5  
4 2017 − 19.6 ± 1.6 9.6 ± 0.7       
4 2018 − 18.9 ± 0.7 9.7 ± 0.7       
1 2019 − 19.7 10.0      

All blue 21  − 18.7 ± 1.3 9.4 ± 0.6 3  8.25  2.43 2.54 12 
Fin whale 2 2012 − 20.3 ± 0.4 10.1 ± 0.9       

3 2014 − 19.6 ± 0.5 9.9 ± 0.7     2  
1 2015 − 19.7 11.1     2  
2 2016 − 17.6 ± 1.1 11.3 ± 1.0     1  
6 2017 − 20.1 ± 0.2 10.5 ± 0.6       
1 2019 − 19.4 11.1       
12 2020 − 19.4 ± 0.6 10.8 ± 0.7      

All fin 27  − 19.5 ± 0.8 10.7 ± 0.7 3.4  6.08  1.75 1.82 5 
Minke whale  2009       9   

2010       84   
2011       20   
2016       20   
2017       27   
2018       20  

17 2019 − 19.4 ± 0.4 12.2 ± 1.3     20 
All minke 17  − 19.4 ± 0.4 12.2 ± 1.3 3.9  3.63  1.48 57 200 
Walrus 18 2014 − 16.8 ± 0.5 12.7 ± 0.2     31  

19 2015 − 16.6 ± 0.5 12.1 ± 0.6      
All walrus 37  − 16.7 ± 0.5 12.4 ± 0.5 4.0  2.89  0.71 0.73 31 
Humpback whale 1 2013 − 20.4 12.0       

2 2015 − 20.2 ± 0.6 11.3 ± 1.7     2  
1 2016 − 17.9 13.9     1  
2 2018 − 18.9 ± 0.6 13.8 ± 0.9      

All humpback whales 6  − 19.4 ± 1.1 12.7 ± 1.5 4.1  3.27  2.25 2.81 3 
Sperm whale 5 2020 − 16.9 ± 1.4 13.8 ± 0.3 4.4  1.45  1.21 1.62  
Bearded seal 5 2019 − 18.6 ± 0.4 15.7 ± 0.5 5.1  0.45  0.42 0.57  
Ringed seal 9 2014 − 18.4 ± 0.7 17.1 ± 0.6       

3 2016 − 18.8 ± 1.5 17.0 ± 0.7      
All ringed seals 12  − 18.5 ± 0.9 17.1 ± 0.6 5.6  4.11  1.81 1.96  
White whale 1 2013 − 16.9 17.8     3  

6 2014 − 17.2 ± 0.5 17.5 ± 0.6     5  
2 2015 − 17.0 ± 0.2 17.4 ± 0.3     2  
1 2016 − 18.1 18.0     5 

All white whales 10  − 17.2 ± 0.5 17.5 ± 0.5 5.7  1.45  0.71 0.80 15 
Polar bear  2012       40   

2013       43  
1 2014 − 18.2 18.6       
4 2015 − 19.1 ± 1.1 17.2 ± 1.4       
5 2016 − 18.6 ± 0.9 18.1 ± 1.9       
1 2017 − 18.29 17.96       
1 2018 − 17.90 19.67      

All polar bears 12  − 18.6 ± 0.9 18.0 ± 1.5 5.8  4.62  2.12 2.33 83  

K.M. MacKenzie et al.                                                                                                                                                                                                                         



Ecological Indicators 136 (2022) 108661

4

2.3. Fatty acid analyses 

We analysed fatty acid compositions from 349 frozen blubber (12 
blue, 5 fin, 3 humpback, 200 minke and 15 white whale samples, and 31 
walrus samples) and subcutaneous fat samples (83 polar bear samples), 
see Table 1 for sampling by years. Samples were methylated, and fatty 
acid methyl esters analysed by gas liquid chromatography, according to 
the methods in Meier et al. (2016) for minke whales and Tartu et al. 
(2016a) for other samples. 

We screened all FA data from blue, fin, humpback, and white whales, 
polar bears and walruses to remove FAs that were not measured in all 
species, along with any in-vivo altered FAs, leaving only dietary source 
FAs, and then to remove FAs comprising <1 % of dietary FA composi
tions by mass in all samples (Mayzaud and Ackman 1978; Iverson et al. 
2004; Falk-Petersen et al. 2004; Linder et al. 2010; Parrish 2013; Cha
varie et al. 2016; Chavarie et al., 2020; Kohlbach et al. 2018). We then 
renormalized data on the compositions of the remaining 23 dietary FAs 
to 100 % within each animal to facilitate comparisons. 

2.4. Statistical analyses 

We performed all statistical analyses in R statistical programming 
language (R Development Core Team, 2011). We calculated and 
compared the Bayesian stable isotope niche of 95% ellipses and their 
overlaps (proportion of overlap relative to non-overlapping area), 
including standard ellipse areas corrected for small sample numbers 
(SEAc), using the SIBER package (Jackson et al., 2011). We use these 
SEAc values throughout in comparative discussions of niche sizes. We 
tested nitrogen and carbon isotope data for normality by Shapiro-Wilks 
test using the RVAideMemoire package, and found δ13C data for fin and 
white whales, bearded seals and polar bears and δ15N data for white 
whales to be non-normal, so we compared isotope compositions be
tween species pairs using Wilcoxon signed rank tests (Hervé 2021) with 
Bonferroni correction (α = 0.025) (Rice 1989). 

We investigated prevailing dietary FA compositions by correspon
dence analysis to determine groupings of animals and which FAs were 
driving the groupings (Fig. 2). We performed analyses and made plots 
using ggplot, FactoMineR and factoextra packages in R (Lê et al. 2008; 
Wickham 2016; Kassambara and Mundt 2020), and then edited the plots 
for aesthetics and labelling in InkScape Vector Graphics Editor (Inkscape 
Developers, 2020). 

We calculated relative trophic position (rTP) for each species using 
the following equation: 

rTP =

(
δ15NSp − δ15Nbase

Δ15NT− D

)

+ rTPbase  

where δ15NSp and δ15Nbase are the mean δ15N values of the species of 
interest and of the species used as a proxy baseline, respectively, Δ15NT-D 
is the tissue-diet fractionation value (change in δ15N between each 
trophic level) and rTPbase is the relative trophic position of the proxy 
baseline species. Here, we assigned blue whales as the rTPbase with a 
value of 3, and Δ15NT-D a value of 3 as this is a reasonable estimate across 
highly variable marine animals and, for the purposes of this work, is 
simply a relative scaling factor (Hobson and Welch 1992; Hobson et al. 
1996; Hoekstra et al. 2002; e.g. Matthews et al. 2020). 

2.5. Data 

Data are available from MacKenzie et al., (2022). All walrus, and 
some blue (n = 18) and fin (n = 12) whale SI data have been published 
previously (Routti et al. 2019; Scotter et al. 2019; Tartu et al. 2020), as 
have FAs data from minke whales (Meier et al. 2016) and polar bears 
(Tartu et al. 2016a; Tartu et al., 2016b). 

3. Results and discussion 

Summary SI statistics are in Table 1. 
There was some species overlap in trophic level (δ15N) or in carbon 

source (δ13C), but the greatest overlap in Bayesian SI ellipses, between 
blue and fin whales, was only 32% (Table 2), although blue whales have 
significantly more variable δ13C values (Table 1, F-test F = 2.7693, df =
20, p < 0.05). 

3.1. Isotopic niche 

Table 2 shows statistical comparisons between species SI values and 
Bayesian ellipses. Despite relatively small sample sizes in several spe
cies, mean δ15N values broadly followed expected patterns based on 
previously published feeding ecologies (Gavrilchuk et al. 2014; Lin
nebjerg et al. 2016; Das et al. 2017), increasing from zooplanktivorous 
blue whales to the apex predator, polar bears (Table 1). We show rela
tive trophic positions (rTP) for the species investigated (Fig. 1, Table 1). 

Fin whales had slightly higher δ15N values compared to blue whales 
(Table 2b), consistent with both blue and fin whales feeding on pelagic 
crustacea such as krill and amphipods, while the fin whales also feed on 
fishes such as herring and capelin (Christensen et al. 1992). Contrary to 
Blanchet et al. (2019), the present study found minimal niche overlap 
between fin and humpback whales (Table 2a). Our results are therefore 
in agreement with previous studies that suggest that both target small, 
lipid-rich fishes (Gavrilchuk et al. 2014), but fin whales are more con
strained to lower trophic level prey while humpback whales have a 
larger isotopic niche, extending to relatively higher trophic level prey 
(Løviknes et al. 2021). The range of δ15N values within humpback and 
minke whales and polar bears confirm previous studies suggesting that 
these species are flexible, generalist feeders across multiple trophic 
levels or regions of different isotopic baselines (Christensen et al. 1992; 
Tartu et al. 2016a; Silva et al. 2019; Cade et al. 2020). The diverse 
feeding strategies in polar bears, demonstrated by their range of stable 
isotope compositions (Fig. 1), reflect a typical polar bear diet, with most 
individual bears likely feeding on marine mammals, but with some in
dividuals having lower SI values, suggesting that they fed lower in the 
trophic chain on more terrestrial prey, perhaps reindeer (Rangifer tar
andus platyrhynchus), consistent with previous studies (Tartu et al. 
2016a; Hansen et al. 2019). Active predation on reindeer by polar bears 
in Svalbard has been reported on several occasions (Derocher et al. 
2000; Stempniewicz et al. 2021), and in recent years bears have 
increasingly plundered bird colonies, eating eggs and chicks (Prop et al. 
2015). The observed polar bear dietary breadth is, to an extent, echoed 
in FA compositions (Fig. 2, see 3.3 Fatty acids source, below). 

White whales are resident year-round in Svalbard waters and their 
relatively high δ13C values are consistent with feeding much more 
coastally and benthically, and on prey with more sympagic carbon 
contributions compared to the other whales in the Barents Sea 
ecosystem (see Lydersen et al. 2001; Vacquié-Garcia et al. 2018). 

Walrus individuals clustered tightly together; SI values indicated a 
consistent, population-wide low trophic level benthic diet (Table 1, 
Fig. 1), in agreement with previous studies (Lowry and Fay 1984; Scotter 
et al. 2019), that is relatively specialised and separated from other 
species analysed here (Fig. 1, Tables 1 and 2). 

In the Barents Sea ecosystem, the δ13C composition of each species 
(Table 1) reflects their relative use of pelagic- to benthic-, coastal- to 
offshore-, and/or terrestrial- or sympagic-source carbon (Hobson et al., 
1995; McMahon et al., 2021; Tamelander et al., 2009; Tamelander et al., 
2006). Consistent with previous studies (Pauly et al., 1998), mean δ13C 
values increased from pelagic-feeding fin whales to benthic-feeding 
walruses (Fig. 1, Table 1), and species with a greater assumed intake 
of benthic or deep-water prey in their diet: walruses and white and 
sperm whales, had elevated δ13C values (Table 1). In general, it is 
thought that the vast majority of food for all the species studied, and 
therefore the dominant proportion of proteins and fats measured in this 
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study, originate in the northern feeding areas (Kshatriya and Blake 
1988; Hazen et al. 2015; Guilpin et al. 2019). In 2016, however, blue 
whales had higher than expected δ13C values for an animal feeding on 
pelagic prey, particularly krill (Thysanoessa and Meganyctiphanes spp.) 
within the Barents Sea, which would place them within the benthic 
nutrient pathway (Tamelander et al. 2006). Given that this species is a 
highly migratory pelagic planktivore, the carbon isotope composition 
measured in 2016 likely originated from warmer waters with an 
elevated δ13C baseline (Silva et al. 2019). Sperm whales also showed a 
wide range of δ13C values, where the elevated values may originate 

either from warmer waters as with the blue whale, or from much deeper 
feeding on prey in ecosystems with strong depth-based isotopic remi
neralisation (Cherel et al. 2009). The origin of these elevated carbon 
isotope values in other ecosystems suggests that these two species may 
represent large vectors of nutrient transfer in this Arctic ecosystem. 

3.2. Specialisation 

Niche space in carbon and nitrogen SI composition provides a mea
sure of ecological range (Newsome et al. 2007; Fry and Davis 2015). 

Table 2 
a. Bayesian 95% ellipse overlap as a proportion of the non-overlapping area of marine mammal species skin δ15N and δ13C values (Jackson et al. 2011); and 2b. 
significance of pairwise comparisons (with Bonferroni correction (Rice 1989), α = 0.025, Wilcoxon rank test, significant differences in bold) between δ15N values 
(upper right) and δ13C values (lower left).  

2a  Blue 
whale 

Fin 
whale 

Minke 
whale 

Walrus Humpback 
whale 

Sperm 
whale 

Bearded 
seal 

Ringed 
seal 

White 
whale 

Polar 
bear 

Blue whale Proportional ellipse 
overlap   

0.32  0.09  <0.001  0.08  <0.001  <0.001  <0.001  <0.001  <0.001 
Fin whale    0.26  <0.001  0.17  <0.001  <0.001  <0.001  <0.001  <0.001 
Minke whale     <0.001  0.26  0.08  0.02  <0.01  <0.001  <0.01 
Walrus      0.01  0.05  <0.001  <0.001  <0.001  <0.001 
Humpback 

whale       
0.12  0.05  <0.001  0.01  <0.001 

Sperm whale        <0.001  <0.001  <0.001  <0.001 
Bearded seal         0.15  0.08  0.09 
Ringed seal          0.21  0.30 
White whale           0.06  

2b  δ 15N p-value 
Blue whale δ13C p-value -  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001 
Fin whale <0.01 -  <0.001  <0.001  <0.01  <0.001  <0.001  <0.001  <0.001  <0.001 
Minke whale <0.025  0.26 -  0.87  0.44  <0.025  <0.001  <0.001  <0.001  <0.001 
Walrus <0.001  <0.001  <0.001 -  0.36  <0.001  <0.001  <0.001  <0.001  <0.001 
Humpback 

whale 
0.29  0.95  0.91  <0.001 -  0.26  <0.01  <0.001  <0.001  <0.001 

Sperm whale <0.025  <0.001  <0.001  0.61  0.028 -  <0.01  <0.001  <0.001  <0.001 
Bearded seal 0.77  <0.01  <0.001  0.001  0.44  0.026 -  <0.001  <0.01  0.03 
Ringed seal 0.61  <0.1  <0.01  <0.001  0.25  0.04  0.41 -  0.12  <0.025 
White whale <0.01  <0.001  <0.001  0.01  <0.01  0.82  <0.01  <0.001 -  0.05 
Polar bear 0.60  <0.01  <0.01  <0.001  0.26  0.04  0.62  0.97  <0.001 -  

Fig. 1. Carbon and nitrogen SI skin values from blue, 
fin, humpback, minke, sperm and white whales, 
walrus, bearded and ringed seals, and polar bears. 
Colours indicate species, symbol shapes indicate 
sampling year, ellipses are 40% prediction areas 
(approximately equal to a standard ellipse (Jackson 
et al. 2011; Jourdain et al. 2020)) for each species for 
multivariate normal distribution. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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Species with smaller isotopic niche area (SEAc) are often more speci
alised and therefore may be more vulnerable to change (Dulvy et al. 
2003; Newsome et al. 2012; Yurkowski et al. 2016). A small isotopic 
niche could also result from feeding on a wide range of items in 
consistent proportions among individuals, although this is less likely 
than feeding on a smaller range of prey types. Isotopic niche area 
increased from the smallest niche in bearded seals to the largest in the 
generalist humpback whales (Fig. 1, Table 1). In blue and fin whales, 
and to some extent also in humpback whales, the niche area was 
enlarged by high δ13C values in samples taken during 2016 (Fig. 1, 
Table 1), which might indicate extensive feeding in warmer waters prior 
to sampling in that year. The larger species niches mostly extended 
along a single isotopic axis (Fig. 1, Table 1), apart from those of the 
generalist feeders (humpback whales and polar bears), indicating pop
ulation flexibility in either trophic level (minke whales) or pelagic- 
benthic/coastal-offshore/sympagic-open water prey sources (ringed 
seals, sperm whales). 

The specialist species, exemplified by the walrus, tended to have 
smaller niches (Table 1, Fig. 1). This species in particular may be 
affected in the long-term by borealisation of the ecosystem, which tends 
to result in retention and recycling of nutrients in the pelagic component 
of the food web with less export to the benthos (Bluhm and Gradinger 
2008; Fossheim et al. 2015), although Scotter et al. (2019) suggest that 
the Svalbard population is currently below its carrying capacity. White 
whales around Svalbard are coastal specialists that are close to the apex 
of the Barents Sea ecosystem. Their enriched carbon isotope composi
tion may originate from sympagic production fuelling their preferred 
prey, ice-reliant gadoids (Lydersen et al. 2001; Choy et al. 2017; Choy 
et al., 2020; Vacquié-Garcia et al. 2018; McMahon et al. 2021), which 
may confer additional vulnerability to changes from borealization. 

Polar bears had the third largest niche of the species assessed here 
(Table 1, Fig. 1), demonstrating their adaptability in the prey that they 
can take, but these apex predators are vulnerable to factors such as 
dwindling sea ice reducing access to their optimal prey, ice-associated 
seals and whales (Simmonds and Isaac 2007; Pagano et al. 2018; 
Moore and Reeves 2018). 

The more specialized species may be particularly vulnerable to 

multiple effects of change and disturbance simultaneously, including 
loss of appropriate habitat and of cold-water specialist prey (Laidre et al. 
2008; Kovacs et al. 2011; Descamps et al. 2017). In the Barents Region, 
this group includes walruses (benthic specialists), bearded and ringed 
seals (individual specialists) and white whales (narrow dietary and 
location preferences). 

3.3. Fatty acids source 

Prevailing (>1%) dietary source FA composition data strongly 
divided the study species into three groups according to the origins of 
the FAs (Fig. 2) (Mayzaud and Ackman 1978; Iverson et al. 2004; Falk- 
Petersen et al. 2004; Linder et al. 2010; Parrish 2013; Chavarie et al. 
2016; Chavarie et al., 2020; Kohlbach et al. 2018; Jónasdóttir 2019). 

Divisions and groupings of FAs in the correspondence analysis 
(Fig. 2, Table S1) were largely driven by benthic-origin dietary FAs 
(originating from benthic bacteria, diatoms and algae) in walruses, 
versus pelagic-origin FAs (mainly copepods) in all whale species along 
dimension 1, while dimension 2 separated more diatom-origin FAs from 
more dinoflagellate- and algae-origin FAs in polar bears and, to a lesser 
extent, white whales. It is interesting to note that, while most polar bears 
were quite separate from both whales and walruses, some individual 
bears also showed values close to both the whales, particularly the white 
whales, and walruses, sometimes within individual bears sampled 
repeatedly in different seasons or years. The clustering together of all 
whale species suggests a relatively common, zooplankton-driven source 
of prevailing dietary lipids within this group relative to the other groups. 
The FAs compositions of all whales were grouped together and separated 
from both walruses and polar bears in their dietary-origin fats, sug
gesting feeding on fats originating from copepod-based pelagic ecosys
tems. Blue and white whales were relatively peripheral, although still 
strongly included within this group, suggesting additional incorporation 
of dietary fats from other sources than the broad whales group, 
including those originating in diatoms and algae. As blue whales are 
obligate feeders on pelagic plankton, particularly krill (Kawamura 
1980), this result may indicate incorporation of dietary FAs from pro
ducers in different ecosystems, as also suggested by blue whale carbon 

Fig. 2. Correspondence analysis of blubber and 
subcutaneous fat dietary fatty acids compositions 
from blue, fin, humpback, minke and white whales, 
walruses and polar bears; larger symbols are species 
centroids, ellipses cover 40% of the species data; n.b. 
there were insufficient humpback whale samples (n 
= 3) to calculate an ellipse. The main fatty acids 
driving the groupings (arrow length indicates 
contribution strength) are labelled according to their 
origins; individual animal values by contribution to 
each dimension are in Table S1. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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isotopic composition (Fig. 1, Table 1) (Silva et al. 2019). The results 
demonstrating dietary lipid sources here echo to a large extent those of 
the species separations and similarities in carbon sources, as shown by 
the δ13C values, with the exception of the polar bears. Our results show 
that the FAs in these mammals contain information on the ecosystem 
origin of fats, and may possibly reveal behavioural changes with 
temporally repetitive sampling. 

4. Conclusions 

Using combined SI and FA analyses, we have empirically defined the 
relative structure, trophic function, nutrient sources and degree of 
specialisation of marine mammals feeding in the Arctic waters around 
Svalbard. We have also identified a few species that likely feed a sig
nificant part of the year in other ecosystems, i.e. the blue and possibly 
sperm whales, with implications for nutrient transfer to the Arctic re
gion. Echoing results from West Greenland (Linnebjerg et al., 2016), we 
find strong niche partitioning and minimal between-species functional 
redundancy, with a maximum niche overlap between any two species of 
32%. The patterns found here suggest that potential ecosystem-scale 
effects could result from reduction or loss of any of these vulnerable 
species, and that, reciprocally, ecosystem changes could result in 
reduction or loss of these species in the European Arctic. 

Ethics statement 
Sampling procedures for blue, fin, humpback, sperm and white 

whales, polar bears, and walruses were approved by the National Ani
mal Research Authority, the Norwegian Animal Care Authority and the 
Governor of Svalbard. Ringed and bearded seal samples were collected 
from animals shot during the annual sport hunt in Svalbard by hunters 
with “big game” licenses. Minke whale samples were taken from the 
Norwegian commercial harvest. See references (Villanger et al. 2011; 
Tartu et al., 2016a; Tartu et al., 2020; Scotter et al. 2019; Bengtsson et al. 
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